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1. INTRODUCTION 
 

The importance of understanding investment cannot be overstated. For 

example, Hungarian data about investment (Gross Asset Formation) and GDP shows 

that investment is responsible for about 20-25% of total (nominal) GDP (Table 1.1). 

The GDP-share of investment is of similar magnitude in more developed countries; 

in the United States, for example, it was between 16.91% (1992) and 21.98% (1979) 

during the 1975-2004 period.1 

 
Year Gross Asset Formation 

(bn HUF)
Gross Domestic Product (bn 

HUF)
Gross Asset Formation as 

% of GDP
1995 1125.389 5700.278 19.74%
1996 1475.538 6900.262 21.38%
1997 1898.917 8550.109 22.21%
1998 2384.615 10031.925 23.77%
1999 2724.532 11198.808 24.33%
2000 3099.131 12834.343 24.15%
2001 3492.990 14694.638 23.77%
2002 3916.892 16657.534 23.51%  
Table 1.1. Investment (gross asset formation) and GDP in Hungary, 1995-2002. Source: Central 

Statistical Office of Hungary (KSH) 

 

Investment, however, not only constitutes a large proportion of the GDP, but 

it is also the most volatile part of it, and it is also one of the main determinants of 

medium- and long-term growth. These are just a few reasons why it has been one of 

the more pervasive questions in economics to understand the nature of investment. 

Early investment models (known as accelerator models, see for example 

Koyck (1954)) relate investment to sales and output. Though these models performed 

relatively well to explain aggregate investment activity, they did not provide an 

underlying theory of why exactly these variables should be included into investment 

regressions. In search for an underlying theory, Jorgenson (1963) set up a 

neoclassical investment model in which he assumed that firms could instantaneously 

and costlessly adjust their stock of capital. Under these assumptions he showed that 

firms always equate the marginal productivity of capital to the user cost of capital. 

Since there are no frictions in Jorgenson’s model, the firms’ investment decision is a 

simple static problem. 

                                                           
1 This proportion was calculated as the ratio of gross fixed capital formation and nominal GDP. 
Source: International Financial Statistics online, http://ifs.apdi.net/imf/ifsBrowser.aspx. 
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Later models departed from the unrealistic assumption of costless capital 

adjustment. If there are frictions to adjust capital stock, however, then the investment 

decision becomes a dynamic problem in which firms have to consider future 

conditions when deciding about their current investment. The first models of this 

type (neoclassical models with adjustment costs) considered the convex costs of 

investment as such a friction. Among others, Abel (1983) showed that in a dynamic 

model with convex adjustment costs investment is an increasing function of the 

marginal value of capital (known as Tobin’s marginal Q), connecting this way Tobin 

(1969)’s Q-theory to the neoclassical model with adjustment costs. 

Despite their theoretical appeal, however, these traditional models did not get 

much empirical support. As demonstrated by several surveys (see, for example, 

Caballero (1999)), in empirical specifications investment was found to have low or 

no responsiveness to investment fundamentals. 

Empirical work over the past decade has shown that there are at least two 

important factors missing from earlier models. First, by investigating the investment 

pattern of a panel of US manufacturing firms over 17 years, Doms and Dunne (1998) 

showed that firm-level investment is lumpy: a typical firm has huge investment 

bursts followed by periods of inactivity. This indicates that the continuity of capital 

stock adjustment – which is a consequence of convex adjustment costs – is not 

realistic, and implies the existence of other types of costs of capital adjustment. 

A second important factor missing from traditional models was documented 

empirically in another influential paper by Ramey and Shapiro (2001), who show 

that capital sales entail irreversibility costs. They find that the actual sales price of 

capital (when sold) can be significantly lower than its replacement value. 

Irreversibility is a cost of investment because it makes capital assets more expensive. 

If firms could sell their capital assets at the same price as they purchased them, then 

after a negative shock, by selling capital, they could get back the original price of 

investment, so the previous decision to invest would not entail any (sunk) cost. On 

the other hand, if the sales price of used capital is smaller than the purchase price 

(that is, if we have at least partial irreversibility), the decision to invest does entail 

sunk costs. 

New investment models (Abel and Eberly (1994), Bertola and Caballero 

(1994), for example) explicitly take into account fixed and irreversibility costs of 
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investment.2 The main goal of this dissertation is to provide further evidence about 

the importance of these non-convex costs of investment. By the term “further” 

evidence I mean that I will not stop by asserting that observed investment behavior is 

lumpy, and this is consistent with the theoretical implications of investment models 

with fixed and/or irreversibility costs. After providing another piece of evidence that 

irreversibility costs (when considered on their own) are indeed significant, in the 

closing chapters I go one step further instead: I simultaneously estimate the key 

parameters of a general investment cost function in which all types of investment 

costs are present.3 Obviously, the simultaneous identification of the different cost 

components requires that we disentangle the effects of these different types of costs 

on investment decisions. 

The estimation of the different investment cost parameters can be important 

for at least two reasons. First, the estimate of the irreversibility parameter is 

interesting on its own right, because it is directly related to disinvestment; and the 

ease of disinvestment is one of the major determinants of economic flexibility and 

speed of adjustment to shocks. Further, as data is generally available only for gross 

investment, negative investment is hidden behind the generally bigger positive 

investment; therefore disinvestment can be directly observed only on exceptional 

occasions. Currently I know about one of these: based on the asset sales of a closing 

US aerospace plant, Ramey and Shapiro (2001) report that on average the ratio of the 

sales price and calculated replacement value of capital assets is only 28%.4 That is, 

capital sales can be done at a discount as high as 72% on average, which is quite 

substantial. Chapter 3 of the dissertation presents another piece of direct evidence 

about the significance of irreversibility. 

                                                           
2 Another frequently used non-convex cost is disruption cost, which means that when undertaking 
investment, firms’ profits decrease by a certain percentage (due to costs of installment and learning 
the new techniques etc). This is, however, very similar to fixed costs, which are considered to be 
independent from the size of investment, but are generally assumed to be proportional to the capital 
stock of the firm. Disruption costs are also a type of costs that are independent of the size of 
investment, but are proportional to the profits (which is likely to be closely connected to the firm 
size). 
3 The idea of structural estimation of a general investment model is not new: Cooper and Haltiwanger 
(2005), and Bayrakhtar, Sakellaris and Vermeulen (2005) are just two examples with similar focus. 
There are some novelties in my approach however: on the one hand, I use an investment model that 
distinguishes between new and replacement investment. Second, the estimation technique is 
somewhat different from the “traditional” methods. For a detailed description of these innovations, see 
Chapter 4. 
4 Of course, while this estimate cannot be directly compared to other estimates of the extent of 
irreversibility that are based on panels of continuously operating firms, it clearly indicates that the 
extent of irreversibility is significant. 
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The estimation of the different investment cost parameters is also important 

because with the cost parameter estimates (besides having better insights into micro-

level investment behavior) one can also investigate the aggregate implications of 

micro-based investment models. Using controlled experiments, one can examine the 

responsiveness of aggregate investment to aggregate shocks, which can be different 

from the micro-level responsiveness (see Caballero (1992) about the “fallacy of 

composition”). I devote Chapter 5 to the analysis of these types of questions. 

The outline of the dissertation is the following. Chapters 3-5 are three 

separate studies about firm-level investment behavior, while Chapter 2 contains a 

literature survey about earlier developments in related areas. It is well known that 

non-convex costs of adjustment lead to periods of inaction at the micro level. This 

creates a link between the non-convex investment adjustment models and similar 

lumpy adjustment models for other factors (labor, inventories, durable goods, prices, 

consumption etc). This modeling framework is the well-known S-s type model 

family, originally applied to micro-level inventory adjustment. Chapter 2 therefore 

describes the evolution of the S-s modeling family in the different contexts, with 

special focus on the evolution of this type of models in the investment literature. 

In Chapter 3 I provide another piece of evidence of the significance of 

irreversibility. The analysis is on a similar data set that Ramey and Shapiro (2001) 

used: data from an asset auction of a discontinuing firm (in which all capital assets 

were sold). I use these data to directly estimate the extent of irreversibility at a single 

firm. While the estimation framework is similar to that of set up by Ramey and 

Shapiro (2001), the novelty of my approach is that I find an alternative (non-linear) 

specification that is more appropriate to estimate the extent of irreversibility. I also 

analyze the theoretical implications of this alternative specification. 

Chapter 4 presents a structural and simultaneous estimation of fixed, convex 

and irreversibility investment costs in a model that is similar (though not identical) to 

the model of Abel and Eberly (1994). The estimation technique is a somewhat 

modified version of indirect inference (developed by Gourieroux and Monfort 

(1996)), which was previously used in a similar framework by several studies (see 

for example Bayraktar, Sakellaris and Vermuelen (2005), though I use an 

unbalanced panel for the estimation). Here I modify the indirect inference method in 

such a way that it leads to better identification for all of the parameters. 
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While I comment on the aggregate implications of my results already at the 

end of Chapter 4, I devote Chapter 5 to analyze these with some controlled 

experiments. In particular, I simulate a panel of hypothetical firms that behave 

according to the model that I estimated previously, and investigate how these 

hypothetical firms react to aggregate shocks. In this context it is possible to address 

the question how certain policies (like a monetary policy tightening) influence 

aggregate investment. 

Chapter 6 summarizes the results. 
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2. THEORETICAL BACKGROUNDS 
 

In models positing constant and instantaneous microeconomic adjustment, the 

implicit assumption is that this adjustment is cost- and effortless. Relaxing this 

unrealistic assumption leads to models in which deviations from optimal behavior 

under costless adjustment is rational; in fact, the optimal timing of adjustments can 

be determined by equating the marginal costs and benefits of them. Therefore the 

seemingly irrational behavior at the micro-level (like the frequently observed lumpy 

adjustment patterns) is the result of a rational decision. 

A second common aspect of the models under my focus is that they allow for 

the possibility that micro-level decisions are sometimes (at least partially) 

irreversible. This can have important implications for the optimizing behavior of 

agents, as the cost structure of the decision problem is altered. Therefore it is 

essential to observe empirically the extent of irreversibility, and consider the 

theoretical consequences of this. 

Finally, when investigating aggregate variables it is often assumed that 

aggregate behavior can be captured through the behavior of a representative (or 

average, median) agent. This assumption is practically equivalent to the idea that 

individual heterogeneity can be disregarded, as micro-level differences are averaged 

out when aggregation is undertaken. This is, however, not necessarily true when the 

behavior of the individuals is lumpy (or more generally: not continuous). In these 

cases, individual heterogeneity can have important implications for aggregate 

dynamics. 

The models discussed below incorporate various elements of these ideas. 

 

2.1. The Evolution of S-s Models: Early Models for Inventories 

 

Apparently, while S-s type models were widely used in the operational 

research literature, the first economic application is due to Arrow et al. (1951), who 

investigate the optimal (non-speculative) inventory policy.5 The main result of the 

paper is that if demand is either deterministic or stochastic, and if order delivery is 

                                                           
5 This context is not surprising: inventories are possibly the easiest to observe among the variables that 
are controlled by the firms and are costly to adjust. 
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immediate, it is optimal for the firms to adjust their inventory holdings only when 

their level reaches 0, with all the optimal orders being of the same magnitude, S. 

Arrow et al. (1951) also investigate a possible extension of this model, when 

orders can not be placed continuously. In this case (in their terminology, in the 

“dynamic model”) the reordering point is no longer 0, but becomes 0>s , chosen by 

the firms, with the maximum stock (or order size) still being a constant, sS > . 

Following this line of research, optimal S-s bands for inventory holdings were 

calculated under many alternative scenarios (see, for example, Ehrhardt (1979)); the 

optimality of these under general circumstances was established by Scarf (1959). 

Still, two possible generalizations were not considered until the end of the 1970s: 

possible extensions of the models to other costly adjustable factors, and the 

implications of the S-s type models to the aggregate variables.6 

 

2.2. The Aggregate Effects of S-s Decision Rules 

 

Although Arrow et al. (1951) noted that they have investigated the issue of 

aggregation, this section is omitted from their paper “for reasons of space”. This 

issue remained unmentioned until 1979, when Akerlof (1979) showed that under S-s 

type money holding policies, the income elasticity of aggregate money demand is 

zero (as any increase in the income does not change the location of the individual S-s 

bands). In fact this is a direct consequence of a similar invariability result at the 

micro level. 

The next step in aggregation the micro-level S-s policies is due to Blinder 

(1981), who investigated more complicated issues in the context of aggregate 

inventory holdings. Having noted that “aggregation across firms is inherently 

difficult… [and] it is precisely this difficulty that has prevented S, s model from 

being used in empirical work to date”,7 he presents the results of some interesting 

controlled experiments (in his words: “simulations”) about the behavior of aggregate 

variables after different micro-level shocks. The results show that even in case of 

fairly simple microeconomic shocks (like temporary demand shocks, 

anticipated/unanticipated rises in sales) aggregate inventories behave quite abruptly, 
                                                           
6 Interestingly, the first paper containing either of these ideas actually contains both: Akerlof (1979) 
introduces “threshold-target” rules for optimal money holdings, and also investigates the effects of 
these on aggregate money demand. 
7 Blinder (1981), pp. 459. 
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and the adjustment pattern can be very irregular. Blinder also discusses the 

importance of the distribution of the individuals inside the S-s bands: he asserts that 

different initial distributions can lead to very different behavior of the aggregate 

variables, so aggregate level investigations should necessarily depart from this 

distribution. 

The distribution of the individuals inside the S-s band is the main focus of the 

influential paper by Caplin (1985). He shows that under very general conditions8 the 

stationary distribution of the individuals’ inventory holdings within the S-s band is 

the uniform distribution: for arbitrary initial within-band distribution, in the long run 

individual inventory holdings (relative to their S-s bands) will be uniformly 

distributed. This finding has two major implications. First, in the long run each 

individual is equally likely to hold any of her possible inventory levels (within the S-

s band). Second, the inventory holdings of any two individuals will be independent 

from each other in the long run, even if their demand shocks are (not perfectly) 

correlated.9 

A further investigation of the importance of the within-band distribution of 

individuals for the aggregate variables is provided by Caballero (1992). In the 

context of labor force holding, the S-s model generalizes to a two-sided adjustment 

model: adjustments are possible on both sides of the band. By focusing on the 

evolution of the within-band distribution of individuals, the paper shows that certain 

micro-level asymmetries (arising from the asymmetric adjustment on the two edges 

of the band) in the labor force adjustment do not necessarily result in asymmetries on 

the aggregate level. This result is still valid even if the individual shocks are (not 

perfectly) correlated, and in order to generate macro-level asymmetries one has to 

assume some alternative source of asymmetry (like asymmetric shocks at the 

aggregate level). 

There are several other studies investigating the behavior of aggregate 

variables when individual behavior is of S-s type. But the main lesson seems to be 

identical: the cross-sectional distribution of individuals within the band is important, 

                                                           
8 Effectively these conditions require that individual shocks should not be perfectly correlated. 
9 These results are considered by Caplin only as by-products of his analysis. In fact, the main goal of 
the paper is to show that S-s inventory policies are consistent with the empirical observation that 
orders are more volatile than sales, a phenomenon that is impossible to be explained with previous 
inventory models. 
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and therefore any aggregate investigation must consider the effects of the evolution 

of this distribution. 

 

2.3. Application of S-s Models to the Adjustments of Factors Other Than 

Inventories 

 

Bertola and Caballero (1990) provide a list about those territories where the 

main idea behind the S-s models had been applied with success until the early 1990s. 

These include early models of money demand (like Baumol (1952), Tobin (1956)), 

models of pricing decisions (Barro (1972)), and asset pricing models in the presence 

of fixed transaction costs (Constantinides (1986)). These early papers generally do 

not state explicitly that they belong to the S-s family. 

I concentrate here only to the post-1990 literature, where the common root of 

these applications has already become apparent. The lines of research applying the S-

s approach primarily include optimal labor force determination, pricing, durable 

goods consumption and investment models.10 

 

Job creation – Job destruction 

 

In the context of the job creation-job destruction models, the main challenge 

was to solve the puzzle of why the variance of job destruction was higher than that of 

job creation in the vast majority of empirical studies. As mentioned earlier, 

Caballero (1992) pointed out that micro-level asymmetries are not necessarily 

responsible for the asymmetry in the aggregate figures. He claimed that in order to 

generate asymmetries in the macro-level, one has to assume that the aggregate (as 

opposed to individual) shocks are asymmetric: for example, negative aggregate 

shocks are higher and occur with smaller probabilities. 

An important contribution to this debate is due to Foote (1998), who pointed 

out that the result of higher variance for job destruction than for job creation is 

mainly observed in the US manufacturing industry, which shows strong declining 

trend over time.11 Foote shows that if the desired level of employment has a negative 

                                                           
10 This list is far from being complete. 
11 That is, firms are hit by asymmetric aggregate shocks, which are more likely to be negative than 
positive. 
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trend, then the within-band distribution of the actual employment (relative to the 

desired level) will be skewed to the right. Therefore, it will be optimal for the firms 

to have underemployment (relative to their desired level) after any job destruction, so 

firing is likely to be of higher magnitude than hiring.12 On the other hand, Campbell 

and Fisher (2000) provide an explanation for the apparently higher variance of job 

destruction that stems from the micro-level asymmetry of adjustment. As they claim, 

the cost of the next job created is higher than the wage because of the additional 

costs emerging, while the cost of the last job retained is smaller than the wage as the 

costs of firing are avoided then. This type of micro-level asymmetry in the cost 

structure generates an asymmetric micro-level adjustment pattern (as usually), but in 

this case it can be shown that this micro-level asymmetry does create an asymmetric 

aggregate dynamics. 

Finally, another important contribution in this area is due to Caballero et al. 

(1997), who estimate the cross-sectional within-band distribution of individual firms 

in a panel of US manufacturing plants, and then analyze the relative importance of 

the aggregate and idiosyncratic shocks to micro- and macro-level adjustment 

patterns.13 The paper concludes that idiosyncratic shocks are the dominant factors 

explaining the micro-level adjustment patterns. The results are also based on the 

analysis of the within-band distribution of firms, and highlight the importance of this 

distribution when investigating aggregate responses to different shocks. 

 

Price adjustment 

 

The S-s models are also used to study price adjustment. It has been 

established long ago that there is price stickiness on the micro level (for surveys on 

this, see Wynne (1995), Bils-Klenow (2004), Álvarez et al (2005)). The possible and 

most common explanation of this phenomenon is the existence of menu-costs,14 

which are directly estimated by Levy et al. (1998). Using data from five US 

supermarket chains, they estimate that menu costs are as high as 0.52$/price change 

                                                           
12 Note that this line of argument also emphasizes the importance of the within-band distribution of 
individuals for the aggregate variables. 
13 This paper is different from the previous two in the sense that it does not address the question of 
why job destruction is more volatile than job creation. 
14 An alternative explanation is provided by Klenow-Willis (2006), who consider the effect of real 
rigidities induced by Kimball-type consumer preferences, which lead to increasing price elasticity of 
demand as prices increase. 
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(or, more than $100,000/year in each store), comprising 0.7 % of total revenues of 

the stores. Therefore, similarly to the inventory and labor force adjustments, it is 

optimal for the stores if they adjust their prices only infrequently, and by higher 

magnitudes. 

An S-s-based model of optimal pricing decisions is presented by Ball and 

Mankiw (1994). Their main idea is very similar to the idea of Foote (1998): as 

generally there is a positive trend in the price level, the desired price of stores is 

increasing over time. This means that the actual nominal price (relative to the desired 

price) follows a decreasing trend. Ball and Mankiw show that under these 

circumstances, after small positive inflation shocks it is optimal to increase the price, 

but price-cuts should only be undertaken after large negative inflation shocks, 

resulting in an asymmetric adjustment pattern in the micro-level. From these results, 

several macro-level consequences can be stated. First, it can be shown that in this 

case asymmetric micro-level adjustment patterns lead to asymmetric macro-level 

responses. The reasoning is very similar to that of Foote (1998): it is the aggregate 

shocks that are asymmetric, and therefore any demand shock will have asymmetric 

aggregate effects. Following a negative aggregate demand shock, prices are likely 

not to decrease substantially, so it is the output that falls. On the other hand, a 

positive aggregate demand shock (of similar magnitude) will rather increase the 

prices, so the output effects will be smaller in this case. As a direct consequence of 

this, inflation in general (that leads to more frequent changes in relative prices) will 

have a negative output effect; so according to this argument the optimal rate of 

inflation is zero. 

Ireland (1997) adds another important aggregate implication of the 

asymmetric micro-level price adjustment. If inflation is high, then disinflation can 

lead to substantial negative shocks: shocks that are big enough to induce negative 

price adjustment in the micro-level. That is, in case of high inflation, a quick 

disinflation will induce price adjustment, and output loss will be of smaller 

magnitude. In contrast, stopping moderate inflation will not force the agents to 

downward adjust their prices (as the negative shocks are not big enough for this), so 

immediate inflation cuts are likely to have substantial output effects in this case. 

Rátfai (2002) presents a further application of the S-s models to pricing 

decisions. By studying Hungarian store-level price data, and estimating the within-
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band distribution of price deviations,15 the paper finds evidence that the asymmetry 

of this distribution is a significant explanatory variable for the aggregate price 

increase, i.e. inflation. 

 

Durable goods consumption 

 

Patterns in durable goods consumption can also be investigated in the context 

of S-s models. By investigating households’ automobile purchases in the US, Eberly 

(1994) finds that about half of the households behave in a manner that is consistent 

with the existence of transaction costs. A typical household of this type behaves in 

the following way: after purchasing an automobile, the household lets it depreciate, 

and when the value of the car has passed a certain lower threshold, adjusts.16 The 

estimates of the within-band distribution of households are consistent with this 

finding. Eberly also notes that from this micro-level decision rule, several interesting 

macro-consequences emerge. First, following a shock on aggregate expenditures on 

durable goods, as controlled experiments show, micro-level adjustment should take a 

substantial amount of time, explaining the empirically observed persistence in 

aggregate data. Further, as growing income is shown to narrow the S-s band, the 

income elasticity of aggregate expenditures on durable goods is substantial. 

In a similar framework, Attanasio (2000) estimates the S-s band for the 

automobile purchases in the US, and finds that it is “strikingly” wide. With a 

controlled experiment he also investigates the behavior of the aggregate variables, 

and concludes that the S-s model can generate important features of aggregate 

dynamics. 

As the main focus of this dissertation is on investment decisions, the next 

section discusses the evolution of S-s models in the context of the investment 

literature. 

 

2.4. S-s Models in the Investment Literature 

 

                                                           
15 In estimating the within-band distribution, he uses a method similar to that of Caballero et al. 
(1997). 
16 The remaining households are found to behave according to a liquidity constraint when deciding 
about automobile purchases. 
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As discussed before in details, early investment models (focusing mainly on 

scale effects and linking the firms’ investment activity to sales, see for example 

Koyck (1954)) were quite successful in explaining aggregate investment, but did not 

have an underlying theory of why exactly those variables were included into 

investment regressions. On the other hand, although later models (Jorgensen 

(1963)’s neoclassical model on capital adjustment, Tobin (1969)’s Q-theory, Abel 

(1983)’s neoclassical model with convex costs, for example) did provide an 

underlying theory of capital adjustment, they failed empirically. Recent empirical 

studies explain this failure by pointing out the absence of some important factors 

from the previous models: lumpiness (Doms and Dunne (1998)) and irreversibility 

(Ramey and Shapiro (2001)). 

Abel and Eberly (1994), (among others, see also Bertola and Caballero 

(1994)) incorporate the empirical observations about lumpiness and (not perfect) 

irreversibility into a theoretical model of firm-level investment. They assume that the 

costs of (dis)investment have three distinct components. The first one is a purchase 

or sales costs, which is simply the buying cost when investment is positive, and the 

negative selling cost (or revenue) when investment is negative. In this context not 

perfect reversibility (or partial irreversibility) means that the selling price is smaller 

than the purchasing price per unit of capital, but still positive. (Perfect irreversibility 

would mean that the selling price is 0.) The second type of investment cost is size-

dependent adjustment cost, for which it is generally assumed that it is a convex 

function of the size of (dis)investment. The idea here is that various types of costs 

(like learning costs, transportation costs, installment costs etc.) are not linearly 

increasing with the size of investment. And finally, the third type of investment cost 

is fixed cost, which is to be paid whenever investment is non-zero. 

Abel and Eberly show that under this cost structure, the optimal investment 

behavior is an increasing function of the marginal q (this finding is similar to Abel 

(1983)’s result, where only convex adjustment costs were incorporated). But in this 

case the optimal investment function is discontinuous: under a certain threshold 1q , 

optimal investment is negative: ( ) 0<qI . Above a higher threshold 12 qq ≥ , optimal 

investment is positive. Between these two thresholds the optimal investment is zero. 

The interval 21 qqq ≤≤  is called the inaction range. 
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In one of their later study, Abel and Eberly (1999) empirically estimate the 

parameters of their theoretical model in a panel of US plants. They find that 

investment is increasing as q increases: for relatively low levels of q, responses to 

improvement in q are strong, indicating that many firms pass their thresholds from 

the inaction range to the positive investment range. On the other hand, if q is high, 

than the still positive response to a further improvement in q is much weaker. This 

represents the fact that the majority of the firms have already been in their positive 

investment range before the improvement. Therefore, the distribution of firms within 

their inaction ranges does have an impact on aggregate investment patterns. 

Caballero and Engel (1999) generalize the Abel-Eberly model by assuming 

that the borders of the inaction range, 1q  and 2q  are stochastic. In this framework, 

they estimate the hazard function of a positive investment for US manufacturing 

plants, and find that the hazard function, in line with the theoretical results, is 

increasing in q. 

Cooper et al. (1999) set up an alternative framework in which the hazard 

function of investment can be estimated. The variable under their focus is the age of 

capital, and the main question is the optimal timing for the individual firms to replace 

their old capital with new one. This model assumes constant rate of depreciation of 

capital goods, and fixed costs of adjustment. While it is not possible to solve the 

model analytically, Cooper et al. show that the hazard of machine replacement is an 

increasing function of the age of the capital goods, a similar result to Caballero and 

Engel (1999). 

The next three chapters of the dissertation will present empirical 

investigations about the determinants of firm-level investment behavior. In 

particular, in Chapter 3 I will estimate the extent of irreversibility of investment 

(together with its determinants) based on a Hungarian data set. I will also examine 

how my results can be incorporated into the current line of investment models. In 

Chapter 4, based on a different data set, I will estimate directly and simultaneously 

the fix, convex and irreversibility costs of the firm-level investment decisions on a 

panel of US manufacturing firms. The main focus of Chapter 5 is on aggregate 

implications. There I use a Hungarian panel to estimate the structural cost 

parameters, and concentrate on the aggregate effects of the results. 
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3. ESTIMATION OF IRREVERSIBILITY OF INVESTMENT 
 

3.1. Literature: More on Irreversibility 

 

Traditional investment models (by assuming that the sales price of new 

capital is 0) assume that any investment decision is perfectly irreversible. In contrast, 

Ramey and Shapiro (2001) estimate the average ratio of the sales price and 

replacement value of used capital to be 0.28,17 so irreversibility is not perfect. 

The assumption of perfect irreversibility may have emerged because negative 

investments are rarely observed empirically. The reason of this can be that a typical 

data set contains yearly data on firm- or plant-level investments. In these data sets, 

positive and negative investments are added up, and any disinvestment is likely to be 

hidden behind the positive investments in other types of capital by the firm or plant 

in the observed year. Moreover, as Abel and Eberly (1994) note, even if 

irreversibility is not perfect, it is still possible that it is never optimal for the firms to 

disinvest. This is the case when the lower threshold of the inaction range happens to 

be negative. 

Despite the fact that negative investments are very rarely observed, it is still 

very important to investigate this problem, because the possibility of disinvestment 

can influence the costs of investment decisions and optimal investment rules. Besides 

the study of Ramey and Shapiro (2001), Goolsbee (1997) considers this issue by 

investigating the retirement pattern of Boeing-707 airplanes. Based on a complete list 

of retired Boeing-707s, he finds that retirement and depreciation are endogenous 

decision variables: the retirement hazard is an increasing function of fuel costs, the 

aerospace-company’s cash-flow, while it is negatively related to the GDP-growth 

and cost of capital. This means that factors influencing investment decisions may 

also influence retirement decisions, so the effect of any shocks to gross investment 

may be different from their effect to net investment. 

In this chapter I directly measure the extent of irreversibility at a 

discontinuing Hungarian manufacturing plant. 

 

                                                           
17 This ratio depends on the specificity of the capital assets and several other factors. One of the main 
goals of Ramey and Shapiro is to investigate these determinants. 
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3.2. Estimation Strategy and Data 

 

I examine a Hungarian data set that is similar to the data set of Ramey and 

Shapiro (2001), and I also adopt a similar (though not identical) estimation 

framework to theirs. The starting point is the following equation: 

 

 iii RS εβα ++= , (3.1) 

 

where ii RS ,  are the sales price and the current-dollar replacement price of the i-th 

item sold, respectively, iε  is random noise, and α  is the constant term. I will return 

to the measurement of these variables only in section 3.3, after the data description 

here. 

Ramey and Shapiro do not motivate the above specification with some 

underlying theory, they just provide some verbal justification: “[…] To put the data 

on a current-cost basis, we reflate the original acquisition cost plus the cost of 

subsequent investment for rebuilds using implicit deflators for investment goods. 

[…] In theory, these indexes should measure the change in price holding quality 

constant, so the reflated values represent replacement cost.”18 

Later, in the econometric specification that they actually use, they define the 

replacement cost as the “current-dollar (reflated), depreciated acquisition cost of 

initial investment”,19 claming that this “is the standard definition of the net capital 

stock from depreciated, current-dollar investment flows […]”.20 That is, the 

replacement cost (or replacement value) that they use for their econometric 

investigations accounts for both inflation of the capital items and the depreciation of 

them. 

Despite the lack of any structural model behind equation (3.1), and the 

somewhat ad hoc nature of its specification, I use this equation as a reduced form 

starting point that relates observed auction sales prices to their estimated 

“replacement values”. Another advantage of this approach is that it makes it easy to 

directly relate my findings to those of Ramey and Shapiro. 

                                                           
18 Ramey-Shapiro (2001), p. 970. (My emphasis.) 
19 Ramey-Shapiro (2001), p. 972. 
20 Ramey-Shapiro (2001), p. 972. 
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I collected data from a small Hungarian manufacturing plant that 

discontinued operation on July 1, 2001, due to the reorganization of the main firms’ 

activities. As the entire product line was discontinued (despite yielding profits during 

the final years of operation), and because of the relatively large distance of the 

closing plant from other plants of the firm, all producing capacities were sold in an 

open asset auction. This, together with the exogenous nature of the discontinuation, 

excludes the possibility of any kind of endogeneity (due to decreasing industry-level 

demand or selection of capital items sold). 

The asset auction took place in September 2001, after an extensive 

advertising campaign (local newspapers, Hungarian newspapers, Internet) run by the 

US-based auctioning company. Some advertising was also undertaken in Slovakia, 

Poland and the Czech Republic, but no bidders turned up from foreign countries. 

There were some individual bidders from the near proximity of the closing plant, but 

institutional bidders came from all regions of Hungary. 

During the auction, all producing capacities of the plant were offered to sale. 

In the auction report there is a total number of 617 items, but because of the grouping 

of the various items, sometimes several closely related items were sold for a single 

price, and actually there are only 408 different auction price entries. The total sales 

value of the auction is more than HUF 61 million (then approximately 200,000 US 

dollars). 

Besides the auction report, the list of all existing assets of the company at the 

time of discontinuation is also available, making it possible to match the items sold at 

the auction with items on the asset list. After careful examination, such matches 

could be identified in only 193 instances, comprising of less than half of the total 

number of items. But the total auction sales value for these matches still exceeds 

HUF 57 million, so the sales value based coverage of the final data set is well above 

90%.21 Once a match was found, it was also possible to identify the date of purchase 

and the purchase price of particular assets, together with the book value at the time of 

the asset listing. This is a unique feature of my data set: in Ramey-Shapiro (2001), 

initial purchase prices are only available for a very small (and probably non-

randomly selected) sub-sample of items sold. 

                                                           
21 This fact indicates that the unidentifiable items are mainly those with very low sales price, and that 
mostly big-ticket items are present in the final sample. 
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Among the 193 identified matches, I make distinction between three major 

types of items: tools and machines (130), raw materials (25), and finished goods 

(38). Table 3.1 summarizes the number of entries and the total sales price in each of 

these groups in our final sample. 

 

 Tools and 
machines 

Raw 
materials 

Finished 
goods 

Unidentified 
match 

TOTAL 

No. of items 130 25 38 215 408 
Sales value 44,812,000 6,316,000 6,000,000 4,635,600 61,763,600 

% of sales val. 72.55% 10.23% 9.71% 7.51% 100.00% 
Table 3.1. The composition of the final auction sample. 

 

The most interesting part of this data set is tools and machines, but it is also 

interesting to have a look at the basic characteristics of the data on raw materials and 

finished goods liquidations. In case of raw materials (25 items), it is reasonable to 

assume that the company purchased them not very long before the asset auction (say, 

within one year), so it is possible to compare nominal purchase prices to the nominal 

sales prices. For this subgroup, the total sales price was HUF 6,316,000, while the 

total purchase price was HUF 62,618,877, which means that on average the sales 

price was only 10% of the purchase price.22 Figure 3.1 illustrates the sales price – 

purchase price relationship of the different observations, and also a trend-line. (Note 

the difference between the scaling of the two axes.) 

                                                           
22 This is not very surprising. The company knew well in advance that it will discontinue its operation 
on 1 July, 2001, so it had only those types of raw materials on stock that could be purchased by larger 
amounts, and were half-used at the moment of discontinuation. 
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Figure 3.1. The sales price and the purchase price of raw materials. 

 

There were 38 items on the auctions that belonged to the finished goods, and 

their total sales price (HUF 6,000,000) is about one-sixths of their total purchase (or 

production) price (HUF 35,791,472). Therefore the discount is smaller in this case, 

but it is still substantial. It is apparent from Figure 3.2 that the variation of the sales 

price – purchase price ratio is much smaller in this case. 
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Figure 3.2. The sales price and purchase price of finished goods. 

 

To answer the question of whether there are also large discounts in the most 

interesting subgroup of the data set, tools and machinery (130 items), further 
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investigations are needed. The difficulty here is that the majority of the tools and 

machines were purchased several years, or in some cases several decades before the 

auction, therefore observed sales prices are not comparable to nominal purchase 

prices. Furthermore, depreciation also changes the replacement value of the various 

assets, and has to be estimated in order to obtain a meaningful comparison. 

Before turning to this issue (in section 3.3), I present a further classification 

of the items belonging to this sub-group. First of all, a careful investigation of the 

data revealed that 17 observations of the data are unreliable.23 As the total sales value 

associated to these observations is only about HUF 1 million, for the sake of 

reliability I decided not to include them into the final sample. 

Among the remaining 113 items, there is one with a very high sales price 

(comprising more than 58% of total sales). This is a product-specific complex 

structure of machines. For the empirical investigations, I decided to drop this 

observation, as it is totally different from the other categories and is likely to 

influence the results to a large extent. Moreover, there are altogether 66 machine-

type items, with more than 39% of total sales price, 4 forklift-type equipments and 

33 hand-tools, with much less importance in terms of sales price. Machine 

supplements (4) and measuring items (5) have only minor importance (see Table 

3.2). 

 

Category No of Items Total Sales Value % 
General tools 25 HUF 201,000 0.46% 
Industry-specific tools 8 HUF 222,000 0.51% 
General machines 61 HUF 17,012,000 38.83% 
Industry-specific machines 5 HUF 231,000 0.53% 
Machine supplements 4 HUF 23,000 0.05% 
Measuring items 5 HUF 39,000 0.09% 
Forklifts 4 HUF 580,000 1.32% 
Structures 1 HUF 25,500,000 58.21% 
SUM 113 HUF 43,808,000 100.00% 
Unreliable match 17 HUF 1,004,026  

Table 3.2. Further classification of tools and machines. 

 

                                                           
23 I have several variables according to which matches between the auction report and the asset listing 
could be identified: item numbers, buyers’ codes, asset descriptions. If one of these variables were not 
the same in the two data sources for a specific item (despite some others being identical), then I 
classified the match as being unreliable. 



 24

3.3. A Simple Model for Determining the Discount on Sales 

 

Now I return to the measurement of the variables in equation (3.1) that serves 

as a starting point. The first task is to determine the replacement value of the assets in 

the sample, in which I adopt the method used by Ramey-Shapiro (2001). In the 

current data set, entries in the auction report generally have several lots: that is, more 

than one asset may have been sold for a single price. For all the lots, I have 

information about their age and initial purchase price. This latter can be expressed 

easily in current HUF-s by using appropriately selected investment price indices.24 I 

denote the current-forint price of the v-th lot in the i-th item by ivI . 

Next, following the empirical evidence about the quadratic nature of the 

economic depreciation function in Ramey and Shapiro (2001), I assume a quadratic 

depreciation function: the value of assets at any age (relative to their initial value) is 

( )2
21exp iviv AGEAGE δδ −− . Therefore, the replacement value ( )iK  of item i in the 

auction report (in which the total number of lots is iLOT ) can be calculated in the 

following way: 

 

 ( )∑
=

−−≡
iLOT

v
ivivivi AGEAGEIK

1

2
21exp δδ . (3.2) 

 

The next step is to express the sales price ( )iS  as a function of this 

replacement value. For this I use a modified version of Ramey and Shapiro’s 

equation (and also a modified version of (3.1)). Assuming that the proportion of sales 

price and replacement value, i.e. the “discount rate” is asset-specific (with respect to 

different type and specificity) and constant over time for each type of assets, the 

equation to be estimated is 

  

+++++= iSPECMACHiGENMACHiSPECTOOLiGENTOOLi KDKDKDKDS 4321 ββββα   

 iiFORKLIFTiMEASUREiSUPPLEMENT KDKDKD εβββ ++++ 765 , (3.3) 

 

                                                           
24 The purchasing date of the oldest machine sold at the auction is 1952. I have investment price 
indices from that time, which is likely to be reliable as effectively there was no inflation in Hungary 
before 1965. 
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where jD  represents the dummy variables for the different types of assets.25 

Equation (3.3) is estimated by OLS, with a grid-search for the depreciation 

parameters. I found that the variance of the error term is the smallest if 

00245.0,1168.0 21 −== δδ , and the estimated regression parameters in this case are 

 

++−= iSPECTOOLiGENTOOLi KDKDSALESPR 0058.09663.0118152  

−−++ iSUPPLEMENTiSPECMACHiGENMACH KDKDKD 8422.00055.00941.0  

iFORKLIFTiMEASURE KDKD 2472.00524.3 +− . 

 

where parameters 742 ,, βββ  (on variables SPECTOOL, SPECMACH and 

FORKLIFT) are not significant at the 5% level. 

There are several problems with this specification. First, some of the 

estimated parameters are negative, indicating that any increase in the replacement 

price is likely to reduce the sales price. Further, similarly to the results of Ramey and 

Shapiro (2001), the constant term is significantly positive. Finally, the residual graph 

(Figure 3.3.) indicates that there are several outlier observations for which the model 

fits poorly. 
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Figure 3.3. The residuals in the original (linear) model. 

 

                                                           
25 These different types are classified as in Table 3.2: general tools (GENTOOL), special tools 
(SPECTOOL), general machines (GENMACH), special machines (SPECMACH), supplements 
(SUPPLEMENT), measuring items (MEASURE), forklifts (FORKLIFT). 
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To correct for these problems, I ran several modified regressions. First I 

estimated the same model with the omission of the outliers, but this did not help: the 

original outliers were those observations that had the highest sales price, and after the 

omission of these the observations the next few highest sales prices became outliers. 

Then I constrained the constant term to be zero. This helped a bit, as all the 

remaining estimated parameters became significantly positive (and all being below 

1), but I still could not solve the outlier problem. Table 3.3 summarizes the parameter 

estimates of some of the modifications. 

 

N=112 N=112 N=110 N=112 N=110
Delta1 0.1168 0.1572 0.1794 0.1551 0.1763
Delta2 -0.00245 -0.00359 -0.00401 -0.00355 -0.00396
Constant 118152 - - - -
GENTOOL -0.9663 0.1290 0.1476
SPECTOOL 0.0058 0.1262 0.1352
GENMACH 0.0941 0.1517 0.1769
SPECMACH 0.0055 0.0332 0.0377 0.0328 0.0370
SUPPLEMENT -0.8422 0.0816 0.1033 0.0798 0.0999
MEASURE -3.0524 0.3055 0.3444 0.3017 0.3390
FORKLIFT 0.2472 0.7588 0.9677 0.7390 0.9309

0.1482 0.1708

 
Table 3.3. The estimated parameters in the variants of the original model. 

(Note: N=112 means that all observations except for the structural item are included into the sample. 
N=110 means that two observations with the highest sales prices are dropped. When there is no 

estimate for the constant term, it was imposed to be 0. The final two columns contain estimates for 
specifications where the GENMACHSPECTOOLGENTOOL βββ ==  restriction was imposed.) 

 

The parameter estimates in those specifications where the constant term is 

restricted to zero are quite meaningful (all the parameters in all the models are 

significant at the 5% level), because (1) all of them lie between 0 and 1; (2) 

specialized items generally have significantly higher discounts than general items, as 

expected (for example: the most general forklift-type items always have the largest 

estimated parameter, and hence the smallest discount). 

These specifications, however, are still not satisfactory. First, the constant 

term, initially found to be significantly positive, is restricted to 0, making it 

inappropriate to apply the constant-discount model for these data. Moreover, the 

residuals are not normally distributed, but the biggest problem seems to be that the 

number of outliers is particularly high in all of the specifications. 

The main problem with these specifications becomes apparent if one looks at 

the distribution of the dependent variable, iS , depicted in Figure 3.4. 
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Figure 3.4. The distribution of the auction sales prices. 

 

This distribution is clearly non-normal. So as a next step I tried to fit models 

in which the distribution of the residuals is non-normal, but the results were 

disappointing. Finally I took the logarithm of the sales price variable, and found that 

the null hypothesis that the auction sales prices are log-normally distributed cannot 

be rejected (Figure 3.5.). 
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Figure 3.5. The distribution of the log of the sales price at the auction. 

 

Therefore I estimated equation (3.3) for the logs of the variables instead of 

the levels. The estimated depreciation parameters are ( 00107.0,0536.0 21 −== δδ ) 

in this case, while the estimated regression parameters are reported in Table 3.4. 
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Estimated Std error t-stat
Constant 3.4298 0.9448 3.6302
GENTOOL 0.4689 0.0901 5.2042
SPECTOOL 0.4363 0.0816 5.3468
GENMACH 0.6098 0.0709 8.6008
SPECMACH 0.5213 0.0811 6.4279
SUPPLEMENT 0.4116 0.0885 4.6508
MEASURE 0.4938 0.0972 5.0802
FORKLIFT 0.6452 0.0860 7.5023  

Table 3.4. Estimated parameters in the log-log model. 

 

This model has several advantages, compared to the model on the levels: the 

residuals are normally distributed, the proportion of outliers is approximately 5% (in 

both directions), and all the estimated parameters are significantly positive. 

As the model is estimated in logarithms, one can interpret the parameters as 

the elasticities of the sales prices of the different sub-groups with respect to their 

replacement value. As all the estimated parameters are significantly bigger than 0, 

and significantly smaller than 1, one can conclude that if the replacement value of 

any asset increases by 1%, its auction sales price will increase by less than 1%. In 

terms of the levels, the higher is the replacement value of an asset, the higher will be 

the discount at which it can be sold. This conclusion is consistent with the 

significantly positive constant term in the earlier specification for the levels, and also 

with the findings of Ramey and Shapiro (2001). 

Investigating the relative magnitude of the estimated parameters, the elasticity 

estimates are the highest for forklifts and general machinery; in fact, these two 

estimates are not significantly different from each other, so forklifts can be treated as 

machines for general purpose. This means that for these asset types when the size of 

investment increases, the corresponding increase of the discount is the smallest. On 

the other hand, the estimated parameters for the specialized items, together with the 

machine supplements (that are also special items if sold on their own) are 

significantly lower. So the discount on these items is likely to be substantial, which is 

a quite sensible result. 

 

3.4. A By-Product of the Analysis 

 

Besides the estimates of the selling discounts on various assets, I also have 

parameter estimates for the depreciation rates; these are that I examine briefly in this 
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section. Figure 3.6. shows the estimated depreciation scheme in the log-log model, 

by depicting the graph of the function ( )200107.00536.0exp AGEAGE +− . 
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Figure 3.6. Estimated depreciation scheme in the log-log model. 

 

In this respect, my results are similar to those obtained by Ramey and Shapiro 

(2001). First, the quadratic term, 2δ̂  is significant in the sense that due to this term, 

the depreciation scheme is highly non-linear. The approximately 5% rate of 

depreciation in the first few years also matches the initial expectations one could 

have, and is in line with other empirical estimates (see, for example Jorgenson 

(1996)). 

A further similarity is that for older assets, estimated depreciation rates 

become negative. This finding can be explained by two factors. First, old assets in 

any sample may suffer from selectivity bias: if a machine is still in operation after, 

say, 50 years, then it must be of very good quality (relative to their similar 

counterparts), otherwise it would have been retired earlier. Second, old machines 

become more and more valuable, as they are generally the only sources that contain 

supplements and parts which can be used to repair other machines of similar age. 

These supplements then become more and more scarce over time as the production 

of them is likely to be finished at some point. 
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3.5. Linking the Results to Theoretical Investment Models 

 

I now examine how the result of increasing discounts on asset liquidation can 

be incorporated into theoretical investment models. 

I found that even after controlling for the specificity of the various types of 

capital assets, the discount when selling used capital goods is increasing with the size 

of the replacement value.26 The estimated equation in the preferred model was 

 

 IS lnln βα +=  (3.4), 

 

or equivalently, βAIS = , with )exp(α=A . The estimated parameters were 

significantly positive at the 5% level, but the β -s for the different types of assets 

ranged between 0.4 and 0.6 (the lowest values referred to the most specific, while the 

highest values were obtained for the most general assets). 

As discussed later in length, a general formulation of the investment cost 

function in theoretical investment models is the following: 

 

 ( )

( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<++

>++

=

=

.0,/

,0,/

,0,0
),(

2

1

IKI
K
IpF

IKI
K
IPF

I

K
KIC

γ

γ  (3.5) 

 

In equation (3.5) F  is the fixed cost of investment, and it has to be paid 

whenever investment is non-zero. (Note that the fixed cost is assumed to be 

proportional with the firm’s capital, or size, a common assumption in the literature.) 

Then there is also a linear component in the cost structure, which comes from the 

buying (P) and selling (p) price of capital, with the buying price being at least as high 

as the selling price ( )0≥≥ pP . Irreversibility then means that the selling price is 

strictly smaller than the buying price. Finally, ( )KIi /γ  are convex functions of the 

                                                           
26 A similar finding can be deducted from the results of Ramey and Shapiro (2001), where the 
estimated constant term in the model for the levels of the variables is significantly positive, also 
indicating increasing discounts with size. 
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investment rate, KI / ; it is usually assumed that 1γ  and 2γ  are quadratic and 

identical (and therefore the convex cost component is symmetric around 0). 

To incorporate my result of increasing discounts when selling capital, one has 

to modify this formulation. Assuming that the estimated β  in equation (3.4) is 0.5 

(in fact we estimated it between 0.4 and 0.6 for the various types of assets), then the 

cost function becomes 
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Thus in equation (3.5’) the lower part ( )0<I  of the function is the sum of 

two (weakly) convex functions, while in the usual specification (3.5) it is the sum of 

a linear and a weakly convex function; therefore, the only difference is that it has 

become “more convex”. So the new specification is simply a special case of the 

original one, in which one chooses a different, more convex functional form for 

( )KI /2γ . This means that the model with the alternative cost specification is 

qualitatively the same as the original one; only quantitative differences may arise as a 

result of a more convex ( )KI /2γ . (For example, the set of cost parameters for which 

disinvestment is never optimal may widen. For more details, see section 4.2.) 

In the next chapter I use an alternative strategy to estimate the extent of 

irreversibility of investment decisions. The new method is different in two respects: 

first, it estimates the different cost components simultaneously, so irreversibility is 

estimated together with fixed and convex costs. Second, the cost parameters are 

estimated on a panel of firms, as opposed to estimating on data from a single firm. 

                                                           
27 One has to write –I under the square root as I<0, and to represent that this is a negative investment 
“cost” (i.e. sales revenue) the correct expression is Ip −− . 
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4. STRUCTURAL ESTIMATION OF THE DIFFERENT TYPES 

OF INVESTMENT COSTS 
 

While in the previous chapter the main focus was on irreversibility costs, now 

I use a more general framework to investigate the various types of investment costs 

simultaneously. This chapter describes a method of structural estimation of various 

firm-level investment costs, and uses an unbalanced panel of US manufacturing 

firms between 1959-87, to estimate the structural investment cost parameters of a 

dynamic investment model. First, in section 4.1, I set up the basic investment model 

under my focus. This model is novel in the sense that it makes explicit distinction 

between new and replacement investment. I also investigate the theoretical 

implications of fixed, irreversibility and convex costs to the responsiveness of 

investment to shocks (or, in the terminology often used later, to the investment-shock 

relationships). This line of argument may seem straightforward, but it is still 

important as later I will identify the different cost components based on this 

investment-shock relationships. Then section 4.2. gives an overview of the 

estimation strategy, highlighting the new elements of my technique. Section 4.3. 

discusses the first stage of estimation: after describing the data, I present the 

estimation results. Section 4.4. discusses the second stage of estimation: it describes 

the steps of the simulation exercise, presents the results and discusses the estimated 

cost parameters. A short analysis of aggregate implications is also provided. 

 

4.1. The Model 

 

Let us consider a firm that maximizes the present value of its future profits 

net of future investment costs:28 
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where profit at time t is given by ( )tt KA ,Π , with tA  and tK  denoting profit shock 

and capital stock at time t , respectively, the cost of investment tI  is ( )tt KIC , , and 

                                                           
28 This model is similar to the models presented by Abel and Eberly (1994) and Stokey (2001). 
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β  is a discount factor. The capital stock depreciates at a constant rate 0>δ , and the 

profit shock is assumed to be a first-order Markov-process, so the transition 

equations are 

 

 ttt IKK +−=+ )1(1 δ , (4.2) 

 tt AA 1+  is a random variable with known distribution. (4.3) 

 

The firm then maximizes (4.1) with constraints (4.2) and (4.3). This is then a 

dynamic optimization problem with state variables ( )KA,  and control I . Omitting 

time indices, and denoting future values by primes, the solution entails solving the 

following maximization problem in each time period: 

 

 ( ) ( ){ }AIKKAVEKIC AAI
+−=′′+− ′ )1(,,max δβ , (4.4)29 

 

and the solution is 

 

 ),(),(),( KICKAVE
K

KAVE IKAAAA =′′=
∂

′′∂
′′ ββ . (4.5) 

 

This is a well-known optimum condition, stating that the (expected) 

discounted marginal value of capital for the firms (left-hand side) must be equal to 

the marginal cost of capital (right-hand side).30 

Obviously, this solution depends crucially on the exact formulation of the 

cost function. In this chapter I use a general formulation of the investment cost 

function ( )tt KIC , , and I assume that it has three components. In the following, 
                                                           
29 More precisely, the value function of the solution is given by the Bellman equation 

( ) ( ) ( ) ( ){ }AKAVEKICKAKAV AAI
′′+−Π= ′ ,,,max,  

30 The timing of the model is the following: firms have an initial capital stock K , and then they learn 
the value of the profitability shock A . This influences the expected discounted marginal value of 
capital (left-hand side of (4.5)). Finally, firms choose I  to make the marginal cost (right-hand side) 
equal to the marginal value of capital (taking into account that the choice of I  also influences the 
marginal value of capital through K ′ ), and enter the next period with their new capital stock K ′ . 
Effectively, I will refer to this sequence of events with the “investment-shock relationship”: in each 
time period, firms respond to profitability shock A  with an optimal investment rate I  or )(* AI . 
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along the lines of Stokey (2001), I examine these components one by one, with a 

special emphasis on their effect on investment decisions. 

The first component of the investment cost function is the fixed cost F , 

which has to be paid whenever investment is non-zero:31 
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where ),( KIΓ  is the cost of investment other than fixed costs (time indices are 

dropped once again to ease exposition). 

The second component of the investment cost function is a linear term, which 

represents the buying (P) and selling (p) price of capital ( )0≥≥ pP . Thus ),( KIΓ  

can be further divided as 
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 (4.7) 

 

Finally, the third component of the investment cost function is ( )KI ,γ , which 

is the usual convex adjustment cost. I adopt the general assumption that ( )KI ,γ  is a 

parabola-like function, with a minimum value of 0, and also a possible kink at 

0=I .32 Therefore the partial derivative of this function with respect to I is non-

decreasing, with negative values for 0<I  and positive values for 0>I , and this 

derivative may be discontinuous at 0=I  if and only if there is a kink in the ( )KI ,γ  

function there. 

More specifically, in this chapter (and also in Chapter 5) I define the fixed 

component of the investment cost function as FK , and the convex component as 

                                                           
31 This fixed cost is assumed to be independent from I , but not necessarily from K . In fact it is a 
common assumption in the literature that the investment cost function is homogenous of degree 1 in 

),( KI , and therefore the fixed cost is assumed to be proportional to K . To ease exposition, for the 
time being I simply use F  instead of FK . 
32 Specifically, ( ) 0, =KIγ  is assumed to be twice continuously differentiable except possibly at 

0=I , weakly convex, non-decreasing in I , with ( ) 0,0 =Kγ . 
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( ) K
K
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2
, ⎟

⎠
⎞

⎜
⎝
⎛= γγ , so that the investment cost function is linearly homogenous in 

( )KI , . I normalize the model to the buying cost of capital, and assume that 1=P , 

from which it follows that for the selling cost of capital 10 ≤≤ p  must hold.33 

Additionally, I will also distinguish between replacement investment and new 

investment, which has not been done in previous models. There are several reasons 

why replacement investment is not as costly as new investment: (1) when 

undertaking replacement investment, firms often have their tools and machines 

checked, certain parts exchanged or upgraded, and this entails contacting well-known 

suppliers at much lower costs; (2) learning costs are also likely to be much lower in 

this case. Though replacement investment may also entail adjustment costs, it seems 

to be a reasonable approximation to treat replacement investment cost-free, as 

opposed to costly new investment. More specifically, I assume that investments up to 

the size of Kδ (the depreciated part of capital) have no convex or fixed costs, and 

firms have to pay adjustment costs after that part of investment that exceeds this 

amount. (Of course, when undertaking replacement investment, firms still have to 

pay the unit purchase price of investment goods.) 

Thus the final specification of the investment cost function is the following: 
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 (4.8) 

 

For the remaining part of this section I return to the general specification of 

the investment cost function (see expression (4.6)), and also neglect the distinction 

between replacement and new investment, with the purpose of investigating the 

                                                           
33 So if 1=p , then there is no irreversibility. Complete irreversibility will be characterized by 

0=p . 
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effects of each cost components.34 A careful investigation of the effects of the 

various cost components is important because a full understanding of the role of the 

model’s key parameters will ease their empirical identification. 

Specifically, I examine the shape of ),( KICI  on the right-hand side of (4.5); 

I will do this by drawing a graph about the partial derivatives of each cost 

components. First, denote the limits of the partial derivative of ),( KIγ  (with respect 

to I ) as ),(lim
00

KIq IIa γ
−→

=  and ),(lim
00

KIq IIA γ
+→

=  (as in Figure 4.1); my 

assumptions ensure that Aa qq ≤≤ 0 . 

 

     ),( KIIγ  

  

 

    Aq  

                     I  

          aq  

 

Figure 4.1. The general shape of the function ),( KIIγ  

 

Moreover, the partial derivative of ( )KI ,Γ  with respect to I  is ),( KIP Iγ+  

for 0>I , and ),( KIp Iγ+  for 0<I , so the shape of this function is as in Figure 

4.2.35 

  

                                                           
34 The effect of various cost components does not change if one allows for cost-free replacement 
investment, so I can neglect this distinction to ease exposition. 
35 Here 21 qq ≥  follows from pP ≥  and aA qq ≥ . 
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     ),( KIIΓ , ),( KICI  

  

 

           AqPq +=1  

 

          aqpq +=2  

 

         I 

Figure 4.2. The general shape of the function ),( KIIΓ  and ),( KICI  

 

Finally, ),(),( KIKIC II Γ=  by the definition of the cost function. 

Returning to the first order condition in (4.5), without fixed costs the solution 

is the following: 

• if for the current capital stock K  and profit shock A  

1))1(,( qKAVE KAA >−′′ δ ,36 then the optimal level of investment will 

be positive; 

• if 2))1(,( qKAVE KAA <−′′ δ , then the optimal investment will be 

negative; 

• and if 21 ))1(,( qKAVEq KAA ≥−′≥ ′ δ , then the optimal investment 

will be zero. 

In this case there is an inaction region as long as 21 qq >  (i.e., either if there is 

a kink at 0=I  in the adjustment cost function )( aA qq >  or if there is no perfect 

reversibility )( pP > ), so the investment function )(* qI  (i.e. investment as a 

function of the underlying fundamental) is flat at 0* =I  for q -s in a certain region 

(if [ ]21;qqq ∈ ), but it is continuous: even small investment episodes will occur. 

                                                           
36 ))1(,( KAVE KAA δ−′′  is the expected marginal value of capital when investment is zero; its 

value only depends on the current value of the state variables ),( KA , and hence can be treated as 

given when firms decide about the control I . It is also obvious that ))1(,( KAVE KAA δ−′′  

increases as the profitability shock A  increases, so the )(* qI  function investigated here has the 

same shape as the )(* AI  shock-investment relationships, which will be the key for identification. 
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2qIEVI K ⋅=⋅  at 0=I  

Figure 4.3. The firms’ investment problem without fixed costs– graphically.  

 

If there are fixed costs, there is a slight difference. To see this, consider the 

( )KI ,Γ  function, which is the sum of a convex and a linear function, with 

( ) 0,0 =Γ K , and a possible kink at 0=I . Moreover, its derivative should be 

),( KIIΓ  as shown on Figure 4.2. Then Figure 4.3 illustrates the possible shape of 

( )KI ,Γ , with the additional assumption that currently 2))1(,( qKAVE KAA =−′′ δ  

(that is, there is no new investment, but the marginal value of the depreciated capital 

stock is the lowest possible to have no new investment: exactly 2q ). 

In a situation depicted on Figure 4.3, optimal investment is zero, but  

))1(,( KAVEEV KAAK δ−′= ′  has the smallest possible value ( )2q  (or the slope of the 

dashed line is the smallest) so that in the absence of fixed costs investment is non-

negative. If KKAA EVKAVE =−′′ ))1(,( δ  decreases marginally, then, still assuming 

that fixed costs are 0, the optimal decision will be a marginal disinvestment, as the 

KIV  line, which represents the benefit from investment in terms of future profits, will 

be locally above the ),( KIΓ  function, the function representing the costs of 

investment. If there are positive fixed costs, however, then after a marginal decrease 

of KKAA EVKAVE =−′′ ))1(,( δ , it will be the zero investment that would be still 
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optimal: the expected marginal net benefit ( ),( KIEVI K Γ−⋅ ) would be so small that 

it would not compensate for the fixed costs that would have to be paid. 

Indeed, if 0>F , then in case of the situation illustrated on Figure 4.3 there 

is only disinvestment if the value of KKAA EVKAVE =−′′ ))1(,( δ  decreases well 

below 2q : so that the net benefit from disinvestment – the highest difference between 

KEVI ⋅  and ),( KIΓ  in the graph – should be at least F  (see Figure 4.4). 

In Figure 4.4 one can see that the highest 2q′  for which the optimal 

investment is negative, is smaller than 2q  in Figure 4.3, because of the fixed cost F . 

With similar reasoning it is easy to see that the lowest q for which the optimal 

decision is to have positive investment (i.e., the upper bound of the inaction region) 

is 11 qq >′ . 

 

   ),( KIΓ  

 

 

 

 

 

          

 

              I 

 

2qIEVI K ′⋅=⋅  

F  
Figure 4.4. The firms’ investment problem with fixed costs– graphically.  

 

It should be obvious from Figure 4.4. that the presence of fixed costs 

generates discontinuities in the investment function: the threshold between the 

inaction region and the disinvestment region is 2q′ , but for q-s slightly below this, the 

optimal disinvestment is not marginal. 
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To conclude this section, it may be useful to summarize the role of the 

different cost parameters in the theoretical model. I have shown that: 

• irreversibility generates an inaction region (i.e., if the marginal value of 

capital is inside a certain band, firms will neither invest nor disinvest), but 

leaves the investment function continuous; 

• fixed costs also generate an inaction region (or in the presence of 

irreversibility costs they further widen it), and create discontinuities in the 

investment function (i.e., there will be no small investments undertaken). 

To further illustrate this point, I solved numerically the model for some 

simple cost structures.37 Appendix A contains the investment functions (investment as 

a function of log(profitability shock)) in various cases: when investment is cost-free, 

when there are only convex costs of investment, when there are only fixed costs of 

investment, and when there is irreversibility. The effects of the various cost 

components can also be observed on these figures. 

 

4.2. Estimation of Cost Parameters: General Strategy 

 

In this chapter, I use indirect inference (as described by Gourieroux and 

Monfort (1996)) to estimate structural investment cost parameters. The general idea 

behind the identification of the structural parameters is to match the investment-

shock relationships obtained from the theoretical model to the observed investment-

shock relationships. The “philosophy” of this approach is that we believe that we are 

able to observe the “true” investment-shock relationships fairly precisely; and then 

we choose those cost parameters in the theoretical model, for which the theoretical 

investment-shock relationships is very close to the observed one. 

This identification strategy is an indirect one when compared to more 

conventional methods, which (for example) start out from the first-order conditions, 

and identify structural parameters on the basis that these conditions should be met 

                                                           
37 For the numerical solution, I assumed that 95.0=β , 07.0=δ , two common assumptions in the 
literature dealing with US data. I solved the dynamic optimization problem with parametric value 
function iteration as described by Judd (1998), with a bi-variate cubic specification for the value 
function. (I also solved the problem with the more accurate value function iteration for appropriately 
discretised state space, and found that the cubic approximation of the value function was quite close to 
this more accurate solution.) I assume that the profitability shock behaves as estimated from real data 
(see section 4.3.). 
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empirically. This conventional method (or its variations), however, cannot be used 

directly in the context of our model, since the existence of an inaction region means 

that the conventional first-order conditions are not always equalities: for observations 

when there is inaction, we have only an inequality, stating that the current marginal 

value of capital, q  is somewhere between the left-hand side derivative of the 

investment cost function, 1q  and the right-hand side derivative of the investment cost 

function, 2q . So I use an indirect method because the direct, first-order condition 

based approach cannot be used in the usual manner.38 

However, my identification strategy is not straightforward either, as there is 

no closed-from solution of the model, and one can not derive analytically the 

theoretical investment-shock relationship as a function of structural cost parameters. 

As discussed in the previous sub-section and also in Appendix A, the theoretical 

investment-shock relationship is non-linear, and in case of positive fixed costs it is 

not even continuous. In recent literature using indirect inference (see for example 

Bayraktar, Sakellaris, Vermeulen (2005) and the initial version of Cooper-

Haltiwanger (2005)), it has been very popular to identify the cost parameters based 

on a quadratic shock-investment relationships that captures non-linearity, but fails to 

capture discontinuity and inaction. Now I argue that though this method can be 

useful in identifying the convexity and irreversibility parameters, it is not sufficient 

to identify the fixed cost parameter.39 

In recent literature, the usual quadratic reduced form regression (the “shock-

investment relationship“, based on which the parameters are identified) applied when 

using indirect inference is the following: 

 

 itttiititit uaaai +++++= − µφφφφ 1,3
2

210
~~~~ , (4.9) 

 

                                                           
38 Cooper, Haltiwanger and Willis (2005) investigate the possibility of modifying the usual first-order 
condition based approach so that it remains applicable in this context. Their modification solves the 
problem of inequality-type first-order conditions for inactive observations by using the data of the 
active firms only, together with the lengths of inaction spells of inactive firms. They also correct for 
the endogenous selection, which arises because of the exclusion of the inactive observations.  
39 This is not surprising: the fixed cost parameter is the one that creates discontinuity and inaction, 
none of which is present in the quadratic equation. 
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where i denotes the investment rate, a denotes the profitability shock, tµ   is a time-

dummy, u is a well-behaving error term, and the variables with tildes denote 

deviations from plant-specific means. In this specification the parameter 2φ  is meant 

to capture the non-linearity of the investment-shock relationship (as higher 

profitability shocks are assumed to lead to proportionally higher investment activity 

in absolute value). According to the usual arguments, parameter 3φ  represents the 

lumpiness of investment: because of inaction, shocks sometimes lead to lagged 

effects – following a positive profitability shock, for example, the investment 

threshold may be passed only in later periods. (Or, alternatively, current shocks may 

trigger immediate investment, and then inaction for many periods.) The parameter 3φ  

therefore is included to account for the possible inaction region, and captures both 

the effects of irreversibility and fixed costs. 

For proper identification of the cost parameters, it is essential that the 

estimated coefficients of the reduced regression should be sensitive to the structural 

parameters. To investigate the effect of structural cost parameters to these regression 

parameters, I estimated the reduced regression parameters in certain simple cases. I 

have already referred to Appendix A to illustrate the investment-shock relationship 

under basic cost structures; now I examine the estimated reduced regression 

parameters for the same cases. 

• In the cost-free case )1,0,0( === pF γ , I have 5233.2ˆ1 =ψ , 

4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . Here the significantly positive 2ψ̂  

represents the slight convexity of this relationship due to diminishing 

returns to capital (a further discussion of this is provided in Appendix A), 

and it is also obvious that investment is highly responsive for shocks: the 

absolute values of the estimated parameters are relatively high. 

• When there are only irreversibility costs )95.0,0,0( === pF γ , I 

estimated 8520.0ˆ1 =ψ , 3928.0ˆ 2 =ψ , 5564.0ˆ 3 −=ψ . Because of the 

inaction region, the estimated shock-investment relationship became more 

convex, which is apparent from the increase in the relative magnitude of 

2ψ̂ . On the other hand, investment is much less responsive to shocks, also 
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because of the inaction region; this is obvious from the smaller absolute 

values of the estimated reduced regression parameters. 

• If there are only convex costs of adjustment )1,2.0,0( === pF γ , then 

the estimated reduced regression parameters are 4657.0ˆ1 =ψ , 

0672.0ˆ 2 =ψ , 2557.0ˆ 3 −=ψ . As can be seen in Figure A/3, the only 

difference between this case and the cost-free case is that the investment-

shock relationship became flatter, and this is apparent from the 

proportional decrease of the estimated reduced regression parameters. 

• When there are only fixed costs of investment )1,0,001.0( === pF γ , 

the shock-investment relationship is basically the same as in the 

frictionless case, with its middle part (when the absolute value of shocks 

is small) missing; see Figure A/4. It is not surprising, therefore, that the 

estimated regression coefficients are quite similar to the estimated 

regression coefficients in the cost-free case: now they are 4475.2ˆ1 =ψ , 

4423.0ˆ 2 =ψ , 4165.2ˆ 3 −=ψ .40 This indicates that changes in F do not 

lead to changes in the estimated reduced regression parameters. 

Thus the general responsiveness of investment to shocks (in other words, the 

absolute value of the estimated reduced regression parameters) identifies the convex 

component of the investment cost function (γ ). Also, the relative magnitude of 2ψ̂  

identifies the irreversibility costs ( p ). However, these regression parameters do not 

contain any information based on which one could identify F , the fixed cost of 

investment.41 

 Therefore, while reduced form regression (4.9) is useful to estimate γ  and 

p , one should look for a different type of information to also identify F . To do this, 

it seems to be obvious to use some property of the investment-shock relationship that 

is exclusively due to the presence of fixed costs. 

                                                           
40 In the cost-free case they were 5233.2ˆ1 =ψ , 4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . 
41 While this result is obvious (and also intuitive) from the shock-investment relationship graphs in 
Appendix A when 1,0,0 === pF γ , it still remains a question whether this result is only local, or 
it also holds globally. For a deeper investigation of this issue, see Appendix D. 
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In section 4.2 I demonstrated that in the theoretical model, increasing fixed 

costs lead to wider inaction region and larger discontinuity in the investment-shock 

relationship, while increasing irreversibility leads to higher inaction without 

affecting the continuity of the investment-shock relationship. So it seems to be 

natural to think that matching theoretical discontinuity with empirically observed 

discontinuity in the investment-shock relationship could easily identify fixed costs. 

But given that this discontinuity is very hard to observe empirically (see observed 

gross and new investment rate distributions in section 4.4, both of which are 

continuous), this method does not work.42 

Because of this, I chose a somewhat more indirect method to identify the 

fixed cost parameter: I try to match theoretical and observed inaction rates. (As 

discussed later, inaction is easily observable when we distinguish between new and 

replacement investment.) The general idea behind this is the following: inaction can 

emerge both because of fixed costs and irreversibility. But given that reduced 

regression (4.9) identifies irreversibility (and also irreversibility-induced inaction), 

from the observed inaction, together with the irreversibility-induced inaction, we can 

infer fixed cost-induced inaction and fixed costs themselves. 

An alternative way to identify irreversibility separately from fixed costs is to 

investigate the asymmetry of the investment rate distribution. It seems to be obvious 

that irreversibility creates asymmetric behavior on the positive and negative ends at 

the micro level, while fixed costs do not lead to such an asymmetry. So when 

identifying the structural cost parameters, I will also control for the asymmetry of the 

theoretical investment distribution, hoping that the direct identification of the 

irreversibility parameter indirectly identifies fixed costs (through matching the 

inaction rates). Thus I also match the theoretical and observed asymmetry to each 

other. 

To conclude this section, let me summarize in one sentence my estimation 

strategy. To identify the investment cost function’s structural parameters, I will 

match the estimated regression parameters of equation (4.9), along with the inaction 

rate and investment rate distribution skewness in the theoretical model to similar 

parameters observed in real data. 

                                                           
42 Cooper and Haltiwanger (2005) also report continuous investment distribution, based on a different 
establishment-level data set. 
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4.3. Data and empirical results 

 

Data set and main variables 

 

To estimate the structural parameters of the investment cost function, I use a 

panel data set about balance sheet and income statement data of publicly traded US 

manufacturing firms between 1959-1987, a part of the COMPUSTAT database.43 

This is a well-known data set, and for a detailed documentation I simply refer to Hall 

(1990). Here I give only a brief description of the main features of the data. 

The “Manufacturing Sector Master File” is a data set about 2,726 large US 

manufacturing firms between 1959-87. The unique feature of this data set is that it 

contains information about the reasons of exits, indicating any domestic/foreign 

acquisitions, privatizations, leveraged buyouts, bankruptcies, liquidations, 

reorganizations, and name changes. This makes it possible (by dropping only those 

firms who were acquisited, reorganized, bought out) to build a data set that contains 

companies with continuous operation together with companies that were either 

bankrupt or liquidated. Excluding also the bankrupt or liquidated firms could lead to 

selectivity bias by excluding many companies with presumably large negative 

profitability shocks and therefore negative investment activity. 

The raw data set contains 49,225 year-observations about 2,726 companies. 

As a first step, I excluded all merged, acquired, privatized firms from the data set 

(along with those companies for which the reason of exit is unknown), and obtained 

a data set containing the continuously operating, bankrupt or liquidated firms. This 

reduced the size of the data set to 31,297 year-observations about 1,664 companies. I 

had to narrow the sample further as there are some companies for which I do not 

have any information about their net value of capital; due to this fact the size of the 

panel is decreased to 29,548 year-observations about 1,617 companies. Finally, at 

later stages I will use sales revenues as a weighting variable; in some cases this is 

missing, or it is unreasonably small.44 After deleting these observations, the size of 

                                                           
43 I am grateful to Plutarchos Sakellaris for giving me access to these data. 
44 This latter case includes newly created firms: in case of these the sales revenue is virtually zero, 
while having huge losses. I assume that this phenomenon is due to initial investment in the first (few) 
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the data set decreases to 29,500 year-observations about 1,616 firms. Table 4.2. 

contains information about the entry and exit dates of these 1,616 companies. 

From now on, I will refer to these 29,500 year-observations about 1,616 

companies as the “full sample”. But for comparison purposes I also created a 

balanced sub-sample between 1972-8745 of the entire data set, labeled thereafter as 

“balanced”. This sub-sample contains 15,088 year-observations about 943 firms, and 

its composition is as in the shaded-striped area of Table 4.2. 

The choice between the balanced and unbalanced samples is not 

straightforward. On the one hand, in the theoretical model I do not model entry and 

exit, so that model is only valid for continuously operating firms, and therefore it 

should be estimated on the balanced sub-sample. On the other hand, eliminating all 

newborn and discontinuing firms from the estimation would inevitably raise 

selectivity issues, as important information about these firms would be missing from 

the data set. So while the optimal solution would be to estimate a theoretical model 

with endogenous entry and exit on the unbalanced sample, modeling entry and exit 

would make the theoretical model much more complicated, and it would be even 

more difficult to estimate that model. Keeping in mind that it is necessary to make 

further steps into this direction, here I use the simple theoretical model without entry 

and exit, and I estimate it on both balanced and unbalanced sub-samples, and report 

the results of these. In any case, the differences between the results of these will give 

some insights about the importance to make distinction between continuously 

operating firms and firms that are subject of entry or exit. 

To measure the capital stock of the firms, I use inflation-adjusted net plant 

value (NPLANT). This variable was calculated by “multiplying the book plant value 

by the ratio of the US GNP deflator for fixed nonresidential investment in the current 

year to the GNP deflator AA years ago”46, where AA stands for the average age of 

the plant and equipment for this particular firm. Thus this variable is a corrected 

book plant value of the firms, where the correction was made to express all previous 

capital purchases at current prices. 

                                                                                                                                                                     
years of operation, and therefore does not represent normal operation, so I deleted these few cases 
from the data set. 
45 Cooper and Haltiwanger (2005) use a balanced sub-sample of the Longitudinal Research Database 
(LRD) between 1972-88. 
46 Hall (1990), page 18. 
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To measure gross investment, I used the difference between gross capital 

expenditures (UFCAP) and sales of property, plant and equipment (SFPPE), both 

reported from firms’ statements of changes. I preferred these variables to the main 

investment variable of the data set (INVEST) as this latter also includes the amount 

spent to acquisitions and other not strictly investment-related expenditures. (Note, 

however, that in the vast majority of the observations UFCAP = INVEST, so the 

results would not change dramatically if I used the other investment variable.) 

 

75 76 77 78 79 80 81 82 83 84 85 86 87 SUM
59 1 1 2 4 278 286
60 1 3 2 2 2 2 3 1 2 1 2 124 145
61 1 1 1 1 1 2 24 31
62 1 1 1 1 60 64
63 1 1 3 2 42 49

F 64 1 1 1 1 1 26 31
I 65 1 2 1 33 37
R 66 1 1 37 39
S 67 1 2 1 1 1 1 1 46 54
T 68 1 2 1 1 3 1 2 2 2 2 126 143

69 1 1 2 3 1 1 1 38 48
70 1 2 1 21 25

O 71 1 2 1 1 1 4 1 1 42 54
B 72 1 1 2 2 1 46 53
S 73 1 2 1 43 47
E 74 1 1 1 2 1 3 86 95
R 75 1 12 13
V 76 1 1 14 16
A 77 1 1 7 9
T 78 24 24
I 79 1 2 1 34 38
O 80 2 1 1 1 43 48
N 81 1 23 24

82 1 1 65 67
83 1 1 55 57
84 37 37
85 44 44
86 38 38

SUM 2 9 7 9 11 14 29 7 16 16 19 9 1468 1616

LAST OBSERVATION

 
Table 4.2. Entry and exit dates of the companies in the sample 

 

To calculate an investment rate variable I first subtracted the capital sales 

(SFPPE) from gross capital expenditures (UFCAP), and then divided this by the 

previous year’s net plant value, and obtained the investment rate in year t: 

 

 
1−

−
=

t

tt
t NPLANT

SFPPEUFCAP
INVRATE . (4.10) 

 

This observed investment rate, however, contains both new and replacement 

investments, while I am mainly interested – in line with the specification of the 

investment cost function in the theoretical model – in the costly new investment rate. 

Therefore I separated new investment and replacement investment based on the 
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relationship between observed net capital expenditures )( tt SFPPEUFCAP −  and 

depreciation )( tADJDEP .47 

• If ttt ADJDEPSFPPEUFCAP >− , then net capital expenditures 

exceeded depreciation, so net capital stock increased. In this 

“expansionary” case I assume that firms undertake as much replacement 

investment as possible (as this is relatively cheap), and only the increase 

in the value of net capital stock is the result of the costly new investment 

activity. So in this case, 

1

)(

−

−−
=

t

ttt
t NPLANT

ADJDEPSFPPEUFCAP
NEWINVRATE . 

• If 0≥−≥ ttt SFPPEUFCAPADJDEP , then the firm’s net capital 

expenditures were positive, but since they did not entirely cover 

depreciation, the firm’s former capital stock depreciated to some extent. 

In this case I assume that all capital expenditures were maintenance-type 

replacement expenditures with no adjustment costs (other than the 

purchase price), and therefore 0=tNEWINVRATE . 

• if tt SFPPEUFCAP −>0 , then the firm is obviously shrinking. It seems 

to be logical to assume in this case that no replacement investment was 

undertaken, as this could have been compensated for only by costly 

capital sales. In this case then I calculate the new investment rate as 

1−

−
==

t

tt
tt NPLANT

SFPPEUFCAP
INVRATENEWINVRATE . 

The distributions of the calculated gross and new investment rates in the full 

sample are depicted on Figures 4.5-4.6. 

 

                                                           
47 ADJDEP is an adjusted measure of the depreciation, where (similarly to the correction of 
NPLANT) observed depreciation is deflated by an investment deflator AA (average age of capital) 
years ago, to get a measure of depreciation that is expressed in current prices (as opposed to historical 
purchase prices represented in the book value). 
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Figure 4.5. The distribution of observed gross investment rates, full sample. 

 

 
Figure 4.6. The distribution of observed new investment rates, full sample. 
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The shape of the gross investment rate distribution is very similar to what is 

reported in Cooper and Haltiwanger (2005), even though I use firm-level (as 

opposed to establishment-level) data. The mode of the distribution is at about 8% 

investment rate, probably reflecting usual replacement investment activity. In the 

new investment rate distribution I have a large peak at zero, reflecting the fact that I 

had many observations with net investment expenditure between 0 and observed 

depreciation. Regarding non-zero investment rates, the mode of the distribution is at 

very low positive investment levels: further 12.51% of observed investment rates is 

in the [0;3%] range, while the proportion of rates in the [0;5%] range is 21.18%. 

Also, both observed distributions are apparently skewed to the left. 

In certain steps of the analysis, I will also use the following variables: 

operating income before depreciation (OPINC), sales revenue (SALES), and 

employment (EMPLY). Appendix C contains a full description of variable 

definitions. 

 

Estimating the reduced regression parameters from data 

 

As discussed in section 4.2, I estimate the investment cost parameters 

( )pF ,,γ  by matching the observed reduced regression parameters, inaction rate and 

asymmetry of investment distribution with the same parameters calculated from 

theoretical investment models. Therefore, as a first step I estimate the reduced form 

regression parameters, calculate the inaction rate and asymmetry of investment 

distribution for the data set. 

To estimate the reduced form regression (4.9) I first identify the yearly 

profitability shocks that hit the firms in our data. I do this by adopting the strategy of 

Cooper and Haltiwanger (2005). First I assume that firms have identical, constant 

returns-to-scale Cobb-Douglas production functions: 

  

 LL
itititit KLBY αα −= 1 , (4.11) 
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where labor ( )itL   can be adjusted in the short-run and can therefore be regarded in 

the yearly data set as being optimized out, but capital ( )itK  cannot be adjusted in the 

short-run. In this expression itY  denotes production, itB  is production shock,48 Lα  is 

labor share. I also assume that firms face a constant elasticity ( )ξ  demand curve 
ξppD =)( , so the inverse demand curve is ξ/1)( yyp = . Therefore the firms’ 

problem is:49 

 

 max)(
1)1(111
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where w denotes the wage rate (assumed to be constant). The first-order condition of 

this problem is wLKB
LL

itititL =+ −++−+ 111)1(11 ξ
ξα

ξ
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ξ
ξ

ξ
ξα , from which the optimal labor 

usage is 
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Substituting this back to the profit function (4.11), the optimal profit of the 

firm is 
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48 Note that this is not the profitability shock that we have in reduced regression (4.9). 
49 To be consistent with the maximand in the theoretical model in (4.1), it is unnecessary to include 
here the cost of capital: it is already included into the capital adjustment cost function. 
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Hence if I write (4.14) as θ
ititit KA=Π* , where itA  denotes the profitability 

shock50 (as opposed to itB , which was productivity shock), then 
)1(
)1)(1(

ξαξ
αξθ

+−
−+

=
L

L , 

a function of the demand elasticity and the labor share in the production function. 

To identify firm-level profitability shocks, I simply calculate θ
it

it
it K

A
*Π

= , 

which can be computed from the data set once having an estimate for θ . 

As the estimation of parameter θ is not straightforward, I estimated it with 

four alternative methods. I also checked for robustness to different outlier-filters in 

each case. The four methods are: 

(1) I assumed that the error term is additive, and estimated θ  with non-

linear least squares from the equation ititiit KA εθ +=Π*  (using fixed 

effects). To avoid the large impact of larger firms on the estimated θ , I 

weighted observations with their size (measured as sales revenue), so 

effectively I estimated the equation ititititiitit RRKAR ///* εθ +=Π  (where 

itR  is sales revenues). 51 

(2) I shifted each itit R/*Π  by a constant C to be able to take the log of most 

observations, and used simple OLS to estimate the equation 

( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln * . Of course, in this case I 

had to drop all observations with CRitit −≤Π /* , so the choice of parameter 

C  determines the outlier filtering rule. Also, the θ  estimates for different 

values of C  will be different, so it is essential to check the robustness of θ̂  

to different values of the shifting parameter.52 

                                                           
50 So the profitability shock consists of wages, demand elasticities, labor shares and productivity 
shocks. One could argue that wages are also changing over time, but as one can easily see, any 
aggregate time-series variation of wages is captured by the time dummies in the reduced form 
regression. 
51 For a more detailed description of the estimation method, see Appendix B. 
52 I chose parameter C to be between 1 and 15. The reason of this is that: (1) the number of firms with 
larger negative profits than their sales revenue is relatively small; (2) a careful investigation of these 
observations shows that these firms are usually either entering or leaving the market, and cannot be 
treated as firms under “normal operation”. So for these parameter values I do not lose too much 
information when excluding the outliers. 
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(3) To account for the potential endogeneity of itK , I estimated the same 

equation ( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln *  with IV (with 

lagged capital as instrument). 

(4) I estimated ( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln *  by OLS on 

the same sub-sample as in case of IV estimation (I call this method as 

“sample corrected OLS”). 

As it turned out, the estimated parameter was robust to both different 

estimation techniques and different outlier filtering. (The estimated parameters were 

between 0.68-0.70 in each cases.) I accept the estimate based on the first method, and 

so the estimated parameter is 6911.0=θ  in the full sample. (In the balanced sub-

sample the estimated θ  is 4641.0ˆ =θ ; these estimates were also robust to the 

estimation method and outlier filtering.) 

With this estimate, it is now possible to calculate firm-level profitability 

shocks. I call the profitability shock calculated this way )/( * θ
ititit KA Π=  as type 1 

shock. But as the resulting variance of the profitability shocks appears to be 

implausibly large (see Tables 4.3a-4.3b later), replicating the method followed by 

Cooper and Haltiwanger (2005), I also estimated the profitability shocks in an 

alternative way. A little algebra shows that the optimal profit in (4.14) can also be 

written as 
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so the itA  profitability shock can also be calculated as 
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To compute the profitability shock this way, one should have an estimate for 

the labor share Lα . But as I only need the deviation of the (log) profit shocks from 

their plant-specific means (see reduced regression (4.9)), the parameter Lα  becomes 
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, so when subtracting the plant-

specific means, the time-invariant term disappears. Therefore it is enough to 

calculate θθ it

it
it K

wL
A

*

= , for which there is data. I will call the profitability shock 

calculated this way as type 2 shock.53 

With the calculated profitability shocks now it is possible to estimate reduced 

regression (4.9). But later, when the theoretical model is solved numerically, I will 

simulate the profitability shocks and draw random variables from the observed 

distribution of shocks, using the exact correlation structure. As this correlation 

structure is extremely rich (shocks are correlated both across individuals and through 

time), I decomposed the itA  profitability shocks (both types) into aggregate and 

idiosyncratic shocks.54 Following Cooper and Haltiwanger (2005), I define the 

aggregate shock simply as 
t

N

i
it

t N

A
A

t

∑
== 1 , where tN  stands for the number of 

observations in year t. The idiosyncratic shock is what remains: 
t

it
it A

A
=ω . 

Tables 4.3a-4.3b contain the descriptive statistics of the identified type 1 and 

type 2 shocks in the full sample and balanced sub-sample. 

 

Type 1 shocks Full sample Balanced panel 

Aggregate shock standard deviation 0.1359 0.1196 

Aggregate shock autocorrelation 0.6979 0.5297 

Idiosyncratic shock standard deviation 1.8355 2.1477 

Idiosyncratic shock autocorrelation 0.4004 0.4975 
Table 4.3a. Standard deviations and autocorrelations of type 1 shocks. 

 

                                                           
53 In fact I have data only on the size of labor force, not on labor costs. But similar considerations as in 
case of Lα  leads to conclude that the value of w  is unimportant. 
54 Thus the common aggregate shock captures between-firm correlation of shocks; the autocorrelation 
of the aggregate and idiosyncratic shocks captures the within-firm correlation of shocks. 
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Type 2 shocks Full sample Balanced panel 

Aggregate shock standard deviation 0.0822 0.0407 

Aggregate shock autocorrelation 0.9325 0.7449 

Idiosyncratic shock standard deviation 0.2891 0.2482 

Idiosyncratic shock autocorrelation 0.6410 0.7050 
Table 4.3b. Standard deviations and autocorrelations of type 2 shocks. 

 

It is apparent from Tables 4.3a-b that the type 2 shocks have much smaller 

variation than type 1 shocks, probably reflecting lower measurement error in the 

labor force variable than in the profit variable.55 It is also intuitive that in case of the 

more reliable type 2 shocks if one identifies the profitability shocks in the full 

sample, as opposed to the balanced sub-sample, then the standard deviation of the 

shocks is significantly (25-30%) higher. This difference could be attributed to the 

variance-increasing effect of the large negative shocks that probably hit the 

liquidated and bankrupt firms mostly excluded from the balanced panel. 

Having identified the profitability shocks, one can estimate the reduced form 

regression (4.9): 

 

 ( ) itttiititit uaaai +++++= − µψψψψ 1,3
2

210
~~~~ .56 (4.9) 

 

Table 4.4 reports the estimated parameters of this regression for the full 

sample and balanced sub-sample. The estimated reduced regression coefficients are 

quite similar to each other, the only difference is in the estimated 2ψ  parameter, 

which is significant only at the 10% level in the balanced sub-sample.57 

 

                                                           
55 Cooper and Haltiwanger (2005) have similar findings for a different data set. 
56 Firms were quite heterogeneous with respect to the variation of shocks that hit them. To deal with 
this kind of firm-level heterogeneity, and to avoid larger influence of more volatile firms for the 
estimated parameters, I weighted each observation by the inverse of the firm-level standard deviation 
of the identified shock. This makes the results more comparable to the results of the controlled 
experiments (see section 4.4 and Chapter 5), as in the simulation exercise I also assumed that the 
standard deviation of the shocks is the same for each firm. 
57 This is probably because there are relatively few large shocks in the balanced sample, and therefore 
the reduced regression detects relatively modest non-linearity. 
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 Full 

sample 

Balanced 

sub-sample 

1ψ  0.1150 
(0.0085) 

0.1032 
(0.0099) 

2ψ  0.0822 
(0.0147) 

0.0310 
(0.0289) 

3ψ  -0.0251 
(0.0081) 

-0.0368 
(0.0092) 

R-squared 0.0711 0.0528 

No. of firms 1,554 941 

No. of obs. 23,413 12,847 
Table 4.4. Estimated reduced regression parameters. Standard errors are in parenthesis. 

 

Estimating the inaction rate and asymmetry of investment distribution from 

data 

 

As discussed in section 4.2, I also match theoretical inaction rate (the 

proportion of zero investments) to the observed inaction rate, because this way I can 

better identify the fixed cost parameter of the investment cost function. The observed 

inaction rate is 42.35% in the full sample, with a standard error of 0.29%.58 Similar 

inaction rate is reported for the balanced sub-sample in Table 4.5. 

As usual, I use skewness to measure the asymmetry of the investment rate 

distribution. As discussed earlier, only the irreversibility parameter is likely to 

influence the asymmetry of this distribution, so this may lead to better identification 

of the irreversibility parameter. Table 4.5 contains the estimated skewness values of 

the investment rate distribution: it is 1.2182 for the full sample, and 0.9866 for the 

balanced sub-sample. (The corresponding standard errors of the estimated skewness 

figures59 are 0.0146 for the full sample, and 0.0200 for the balanced sub-sample.) 
                                                           

58 The standard errors of the estimated proportions are 
n

pp )1( −
, with p denoting the estimated 

proportion, and n is the number of observations. Inaction rate in Figure4.6 is apparently larger, but 
that is actually the proportion of new investment rates between -1% and 1%. 

59 The standard error of estimated skewness is calculated as 
nnnn

nn 6
)3)(1)(2(

)1(6 ≈
++−

−
, with n 

denoting the number of observations. 
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 Full 

sample 

Balanced 

sub-sample 

Skewness of investment rate distribution 1.2182 
(0.0146) 

0.9866 
(0.0200) 

Inaction rate 0.4235 
(0.0029) 

0.4625 
(0.0041) 

Table 4.5. Skewness of investment rates and observed inaction. Standard errors are in parenthesis. 

 

From now on, I will work with the parameter estimates for the full sample as 

benchmark parameters. In the second step of the estimation procedure I will choose 

the structural parameters of the investment cost function in such a way, that the 

estimated reduced regression parameters from the theoretical model, along with the 

inaction rate and skewness of investment rate distribution, should be sufficiently 

close to these benchmark parameters. 

Before finishing this section, it maybe useful to summarize those results that I 

will use to identify the theoretical cost parameters: 

• standard deviations and autocorrelations of the identified (type 2) 

aggregate and idiosyncratic shocks (for the full sample, these are in 

column 2 in Table 4.3b). This information will be used to simulate 

aggregate and idiosyncratic shocks that are similar to observed shocks to 

solve numerically the theoretical model and simulate investment paths; 

• estimated parameters of the reduced form regression from the full sample 

(column 2 in Table 4.4), and the estimated variance-covariance matrix  

( )Ŵ of the estimated parameters ( )321 ˆ,ˆ,ˆ ψψψψ =TRUE ; 

• estimated skewness of the distribution of the investment rates in full 

sample, and the standard error of this (first entry of the 2nd column in 

Table 4.5); 

• observed inaction rate in full sample, and the standard error of this 

(second entry of the 2nd column in Table 4.5). 
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4.4. Estimation Results 

 

The estimation of structural cost parameters involves three steps. 

Step 1. I specify the investment cost function according to (4.8): 
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 (4.8) 

 

Then I solve numerically the theoretical investment model for any cost 

parameter vector ),,( pF γ . When solving the model, I assume that 95.0
1

1 =
+

=
r

β , 

07.0=δ , common assumptions in the literature using US data. For the numerical 

solution I use parametric value function iteration (as described by Judd (1998)), with 

the value function assumed to be a bivariate cubic function of (A, K).60 During the 

solution I assume that the profitability shock itA  is the sum of aggregate and 

idiosyncratic shocks, where the aggregate shock is a 2-state Markov-process with 

standard deviation and autocorrelation estimated from real data (see Table 4.3b), and 

the idiosyncratic shock is an AR(1) process with normally distributed innovations 

(also matching the properties of idiosyncratic shocks reported in Table 4.3b). 

Step 2. With the numerical solution of the theoretical model, I simulate 

capital and investment paths of hypothetical firms. To do this, first I simulate 

(aggregate and idiosyncratic) profitability shocks, using the descriptive statistics of 

the “true” (type-2) profitability shocks identified from the data (Table 4.3b). I also 

simulate the initial capital of the firms, then with the policy function obtained in 

Step1, along with the simulated shocks, I generate the capital and investment path of 

                                                           
60 I solved the model initially with the more precise (but computationally more demanding) value 
function iteration, and chose the cubic functional form based on these results. 
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each firm.61 Then I calculate the deviations from plant-specific means for both the 

investment rate and profitability shocks, and estimate the reduced form regression 

(4.9) on the simulated data set. I also calculate the skewness and the inaction rate in 

the simulated investment distribution. From now on, denote the estimated set of 

parameters by ( )pF ,,γψ , which expresses that these estimated parameters will 

depend on the structural cost parameters.62 

Step 3. For any cost parameter vector ),,( pF γ , I calculate the “distance” 

between ( )pF ,,γψ  and the parameter vector estimated from real data. The distance 

function is 

 

 ( ) ( ) ( )TRUETRUE pFWpFpFD ψγψψγψγ −⋅⋅′−= − ),,(ˆ),,(,, 1 , (4.18) 

 

where Ŵ  is the variance-covariance matrix of TRUEψ  estimated from the data.63 That 

is, for any ),,( pF γ  the distance is the weighted sum of squared deviation of the 

estimated parameters on simulated data from the “true” parameter set estimated on 

real data, with the weights being the inverse of the estimated variance-covariance 

matrix of the “true” parameters. 64 

I estimate the structural cost parameters ),,( pF γ  by minimizing the distance 

function (4.18). The results for the “full sample” are in Tables 4.6-4.7. 

Table 4.6 contains the estimated structural cost parameters.65 The magnitude 

of the fixed costs seems to be very small, but the estimated parameter is about 4.69% 

                                                           
61 To avoid problems arising from the misspecified distribution of the initial capital of the firms, we 
prepare the capital path of each firm for 129 periods (instead of 29), and only consider the data of the 
last 29 periods, which are not influenced by the initial level of the capital. The number of simulated 
firms is the same as the number of firms in our data, 1616. 
62 Note that here ψ  is a vector containing 5 elements: ( )321 ,, ψψψ  from the reduced form 
regression, and the skewness and the inaction rate in the investment rate distribution. 
63 Ŵ  contains the estimated variance-covariance matrix of the reduced regression parameters, the 
estimated variance of the skewness of the investment distribution )0146.0( 2 , and the estimated 

variance of the observed inaction rate )0029.0( 2 . The pair-wise covariance between the estimated 
skewness, inaction rate and reduced regression parameters is assumed to be 0. 
64 So parameters estimated with smaller standard errors have larger weights.  
65 Standard errors are calculated as described by Gourieroux and Monfort (1996). 
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of the “regular” purchase price of capital when investment rate is 1%.66 Moreover, 

the estimated irreversibility parameter indicates substantial irreversibility, a more 

than 30% average discount on capital sales. The estimated convex cost parameter is 

0.4464, which is in line with comparable estimates in the literature. 

 

estimated F 0.000469 
(0.000151) 

estimated γ 0.4464 
(0.0252) 

estimated p 0.6962 
(0.0923) 

optimal LOSS 193.4723 
Table 4.6. Estimated cost parameters from the full sample. Standard errors are in 

parenthesis 
 

To further analyze the estimated cost parameters, suppose that a firm sells 1% 

of its existing capital stock. Then the fixed cost of this transaction is 0.000469, the 

convex cost is (0.4464/2)*(-0.01)*(-0.01) = 0.00002232, and the irreversibility cost 

is 0.3038*0.01 = 0.003038 (the product of the discount at which the firm can sell 

capital, and the quantity sold). So the total adjustment cost to be paid is 0.003529, 

which is 35.29% of the price the firm would receive for this capital sale in the 

frictionless case (0.01). The relative importance of the different cost components is 

the following: 13.3% of total adjustment costs is fixed cost, 0.6% of total adjustment 

costs is convex cost, and the remaining 86.1% is irreversibility cost.67 

To take another example, the average positive investment rate in the data set 

is 6.34%; in this case the total adjustment costs are 2.15% of the purchase price, of 

which 34.3% are due to fixed costs, and 65.7% are due to convex costs. (Obviously, 

in case of positive investment rate there are no direct irreversibility costs.)  

The estimated irreversibility parameter, 6962.0=p  (significantly smaller 

than 1) indicates that firms can sell their used capital at a 31% discount, or on 

                                                           
66 Note that I normalized the model to the buying price of capital, and therefore when investment rate 
is 1%, the price of new capital is 0.01. 
67 For different investment rates, these proportions change. Larger new investment activity generally 
increases the importance of adjustment costs, mainly because of the relatively quickly increasing 
convex costs. Also, for larger investment projects convex costs will dominate fixed and irreversibility 
costs. 
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average 31% of any dollar spent on investment is sunk. This is quite far from the 

estimate of Ramey and Shapiro (2001), who find that at a discontinuing US plant the 

average discount on used capital is 72% of the replacement value. This value is also 

far from the results in the previous chapter, where the average discount was 

approximately 50% on the capital sales of a discontinuing Hungarian manufacturing 

plant. However, the estimate of 69.0=p  is based on continuously operating plants, 

as opposed to the total sell-out of assets at discontinuing plants, so these results 

cannot be directly compared. On the other hand, this parameter estimate is much 

smaller (and therefore indicates much higher irreversibility) than those results in the 

literature that use similar techniques to ours. Based on indirect inference, with 

reduced form regression (4.9) in a somewhat modified model, the initial version of 

Bayraktar, Sakellaris and Vermuelen (2005) estimate 902.0=p  for German 

manufacturing plants between 1992-2000. Further, for a balanced panel of US 

manufacturing plants Cooper and Haltiwanger (2005) estimate 975.0=p  with a 

simulated maximum likelihood method. The latter two results are estimated from a 

balanced panel, which may lead to significantly different results than estimation from 

an unbalanced panel. Moreover, the result of substantial irreversibility is primarily 

due to the control for the skewness of investment rate distribution, which is missing 

from other studies. 

 

 simulated “true” 

reduced regression parameter 1ψ  0.1971 0.1150 

reduced regression parameter 2ψ  0.0778 0.0822 

reduced regression parameter 3ψ  -0.0767 -0.025 

inaction rate 0.4179 0.4235 

skewness of investment distribution 1.2087 1.2182 

total LOSS 193.4723 

Table 4.7. Estimated reduced regression parameters, inaction rate and skewness. 
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Table 4.7 reports the simulated reduced regression parameters, inaction rate 

and investment rate skewness, and also the observed values of the same parameters. 

It is apparent that the applied matching technique does quite well to match simulated 

regression parameters, inaction rate and skewness to their observed values. 

 

4.5. Aggregate Implications 

 

With the estimated cost parameters one can investigate the aggregate 

implications of the results. To do this, I simulated a panel of firms that have the 

investment cost function as estimated, and calculated the aggregate investment and 

aggregate shock over the years in the simulated data set. Table 4.8 contains the main 

descriptive statistics of the simulated aggregate variables with the corresponding 

descriptive statistics of the individual variables.  

 

 in plant-level 

data (real data) 

in plant-level 

data (simulation)

in aggregate 

data (real data) 

in aggregate 

data (simulation)

).(. tidevst  0.1258 0.0704 0.0354 0.0224 

),( 1−tt iicorr  0.2248 0.1143 0.3707 0.5695 

),( tt aicorr  0.0890 0.5179 0.5227 0.6416 

Table 4.8. Descriptive statistics of aggregate and plant-level investment and shocks. 

 

It is apparent from Table 4.8 that the standard deviation of the aggregate 

investment rate is naturally much smaller than that of the individual investment rate. 

Moreover, the autocorrelation of the investment rate is also much higher in the 

aggregate level, and the correlation between the investment rate and the profitability 

shock also increases. Aggregate investment behaves quite differently from individual 

investment. 

I also estimated the investment-shock relationship on the aggregate level. 

Contrary to what was found on the plant-level, I could not detect any nonlinearity in 

this relationship. (The squared shock remained insignificant when I estimated a 

regression of investment on shocks.) I found that on the aggregate level there is a 

modest linear relationship between profitability shocks and investment – the 
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estimated parameter of the profitability shock is 0.2392 in the real data, and 0.3394 

in the simulated data (both of them are significant at the 5% level). Chapter 5 

contains further controlled experiments on the aggregate effects of profitability 

shocks. 
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5. AGGREGATE EFFECTS OF ESTIMATED FIRM-LEVEL 

INVESTMENT COSTS IN HUNGARY 
 

In Hungary, corporate investment behavior has been mainly investigated on 

aggregate data (see, for example, Darvas-Simon, 2000, and Pula, 2003), and only 

few studies follow the new international trend of addressing this question at the firm 

level. Among these few studies, Molnár-Skultéty (1999) used the 1996 wave of the 

investment statistics survey of the Hungarian Central Statistical Office68 to 

characterize the corporate investment behavior by such factors as size of investment 

costs, number of employees, sales revenues, and to make a correlation analysis of 

investment activity with various balance sheet measures. In another study, Szanyi 

(1998) uses a PHARE-ACE investment survey69 to investigate the dynamics of 

investment activity, and reports the evolution of some simple descriptive statistics 

(investment relative to sales revenues and number of employees) between 1992-

1995. Finally, Kátay-Wolf (2004) use the Hungarian Tax Agency’s balance sheet 

data of all double entry book keeping firms between 1992-2002, and make a step 

beyond providing simple descriptive statistics of firm-level corporate investment 

behavior by addressing the question of how „changes in the user cost of capital – of 

which the interest rate is only a determinant – affect corporate investment 

behavior”70 with econometric tools. 

This chapter is a follow-up of the analysis of Kátay-Wolf (2004) in the sense 

that (1) it investigates the determinants of the investment behavior at the firm level; 

and (2) uses the same data set. However, there are several aspects according to which 

my approach is somewhat different:  

(1) Similarly to the previous chapter, I use the “new investment models” set 

up by the post-1990 investment literature as a modeling framework, incorporating 

those characteristics of firm-level investment behavior that we have overwhelming 

empirical evidence about.71 The main focus of these models is on different types of 

                                                           
68 This survey contains all corporate investment activity that exceeded 10 million HUF-s in 1996 
prices. 
69 Here data is available about 258 firms that voluntarily filled a questionnaire about their investment 
behavior between 1992-95. The data set is admittedly non representative. 
70 Kátay-Wolf (2004), p. 2. 
71 I refer again to Doms-Dunne (1998) about lumpiness, and Ramey-Shapiro (2001) about 
irreversibility. 
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firm-level investment costs, which may include fixed, convex, irreversibility and 

disruption costs that firms may have to pay when undertaking investment.72 

(2) Another difference of my approach is that while in Kátay-Wolf (2004) the 

main driving force of investment is the appropriately defined “user cost of capital”, I 

use a model as described in the previous chapter, in which one does not claim to 

know exactly which factors affect investment activity and which do not, but treats a 

“profitability shock” (that incorporates any influencing factor) as the main 

determinant of investment at the firm level. As a consequence, much emphasis is 

taken on the empirical identification of this profitability shock and its distribution. 

(3) Most importantly, I extend the framework to investigate aggregate 

investment behavior, where aggregate investment is defined simply as the sum of 

firm-level behaviors. 

So in this chapter I use the model set up in section 4.2, and the estimation 

strategy discussed in section 4.3 to analyze the investment decisions of Hungarian 

firms between 1992-2002. As a contribution to my earlier results, here the main 

focus is on aggregate investment dynamics. In particular, I investigate how a 

monetary policy shock can affect aggregate investment. In doing so, I assume that 

monetary policy affects the aggregate profitability shock that hits the firms, and the 

sum of the firm-level responses to this aggregate profitability shock will determine 

the aggregate effect on investment. 

 

5.1. Data and Variables 

 

I use the same data set that was also used by Kátay-Wolf (2004): “corporate 

tax returns of double entry book keeping firms between 1992 and 2002”,73 with the 

only exception that I use only manufacturing firms for the analysis. Otherwise, the 

initial data filtering is the same, and in fact I mostly used the variables that were 

constructed by Kátay-Wolf (2004). 

                                                           
72 See Stokey (2001) for a taxonomy about these types of costs. For empirical estimation of the 
different cost components, see Bayraktar et al (2005) and Cooper-Haltiwanger (2005). 
73 Kátay-Wolf (2004), p. 28. The 1992 wave of the tax returns is excluded later because of low 
reliability and missing investment rate data, so in fact the panel starts in 1993 and ends in 2002. 
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As it is important to know the aspects of sample construction, let me briefly 

summarize the steps of initial data manipulation in Kátay-Wolf (2004): 

(1) observations with relevant missing data (number of employees, capital 

depreciation) were deleted; 

(2) very small firms74 were deleted; 

(3) data was corrected when it was considered false; 

(4) outliers (with respect to cash-flow, depreciation rate, user cost, investment 

rate, changes in capital stock, employment, sales, user cost) were excluded. 

As a result of this, the original panel of 1,269,527 year-observations was 

reduced by Kátay-Wolf (2004) to 308,850 year-observations. Since I estimate the 

cost parameters only on manufacturing firms, the size of the sample further reduced 

to 110,808 year-observations. Also, I went on with the exclusion of missing 

observations and outliers with respect to my key variables (investment rate, sales 

revenue, capital stock, profit), so the final sample size of my data set is 92,293 year-

observations.75 

As in Chapter 4, the key variables investment rate, capital and profit. To 

measure gross investment rate, I adopted the investment rate variable also used in 

Kátay-Wolf (2004), who constructed investment rates from accounting capital data. 

From the calculated gross investment levels and observed depreciations, Kátay-Wolf 

(2004) constructed a real capital variable with Perpetual Inventory Method (PIM); I 

used this variable to measure capital stock. Finally, we used operating profit to 

measure the profit of the firms. 

 

5.2. Firm-Level Results 

 

                                                           
74 Definition of very small firms: if the number of employees is smaller than 2 in a particular year, or 
if the number of employees is smaller than five during three consecutive years. 
75 Specifically, I deleted 18,308 year-observations because of missing investment rate. (These were 
mostly the observations of 1992, when initial capital stock was not available.) Then I deleted further 
118 year-observations because of non-positive sales revenues. Next, I deleted those 35 year-
observations for which capital stock was not observed. Finally, I deleted 54 year-observations with 
unobserved profit. These steps reduced the sample size to 110,808 – 18,308 – 118 – 35 – 54 = 92,293 
year-observations. 
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In this section I describe the measurement of the profitability shock and 

inaction rate that will be used to identify the structural cost parameters. As discussed 

in the previous chapter, these will then be used to calculate the estimated parameters 

of the shock-investment relationship (or the reduced regression parameters), the 

inaction rate, and the skewness of the investment rate distribution. 

For the reduced-form shock-investment relationship, it is necessray to have a 

profitability shock and an investment rate variable. This latter variable will also be 

used to determine the inaction rate and the investment rate distribution skewness. In 

what follows, I first describe the identification of profitability shocks, then discuss 

the measurement of new investment rates, and finally present the estimated statistics 

(to which matching will be done). 

 

Identification of profitability shock 

 

Again, I identify the profitability shock based on the methodology of Cooper-

Haltiwanger (2005). Following the same steps as in section 4.5, one can derive that 

the type-1 profitability shock can be calculated as θ
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, as derived in (4.16). As opposed to 

the US data used in the previous chapter, the estimation of θ  was not entirely robust 

to different estimation techniques and outlier filtering,76 so now I discuss the results 

of these estimations in more details. As I already discussed in Chapter 4, I used four 

alternative methods to estimate θ : 

(1) I assumed that the error term is additive, and estimated θ  with non-

linear least squares from the equation ititiit KA εθ +=Π*  (using fixed 

                                                           
76 This is probably because the Hungarian data is much more noisy than the COMPUSTAT data. One 
could argue that it would be advisable to explicitly take into account the potential measurement errors. 
One way of doing this could be the method developed by Altonji-Devereux (1999), who model the 
measurement error of reported wages. However, in this case the measurement error problem is more 
difficult to solve, as in this data set there are several variables affected by the measurement error 
problem, while for Altonji-Devereux the only problematic variable is reported wages. So a systematic 
modeling of all types of measurement errors would make the model much more complicated, and is 
therefore beyond the scope of the dissertation. Instead, I check very carefully for the robustness of the 
results across different specifications. 
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effects). To avoid the large impact of larger firms on the estimated θ , I 

weighted observations with their size (measured as sales revenue), so 

effectively I estimated the equation ititititiitit RRKAR ///* εθ +=Π  (where 

itR  is sales revenues). 

(2) I shifted each itit R/*Π  by a constant C to be able to take the log of most 

observations, and estimated 

( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln *  by OLS. 

(3) To account for the potential endogeneity of itK , I estimated the same 

equation ( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln *  with IV (with 

lagged capital as instrument). 

(4) I estimated ( ) ( ) ( ) ( ) ititiititit KARCR εθ ++=++Π lnlnln/ln *  by OLS on 

the same sub-sample as in case of IV estimation (I call this method as 

“sample corrected OLS”). 

 

estimated theta with different techniques, for different outlier-filters
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Figure 5.1. Estimates of parameter θ  with different methods, as a function of different outlier 

filtering. 
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Figure 5.1 illustrates the estimated θ -s for different outlier-thresholds. (I 

filtered out outliers according to the left-hand-side variable, itit R/*Π .) It is apparent 

from the graph that the NLLS-method is very sensitive to the exact way of outlier 

filtering, while the log-model-based estimates do not have similar sensitivity (despite 

the estimates being different by definition because of the different shift parameter C). 

It is also apparent that IV-estimates are always higher than OLS-estimates, which 

indicates that capital is endogenous.77 Also, there is a systematic difference between 

the original and the sample-corrected OLS-estimates, which is probably because the 

omitted part of the sample (mainly the 1993-observations that are used only as 

instruments for IV-estimation) behaves differently from the remaining part of the 

sample. 

In what follows, I accept the IV-based estimate of parameter θ . It is apparent 

from Figure 5.1 that the parameter estimates are quite robust for different shift 

parameters C (they fluctuate between 0.3372 and 0.3301), so I accepted the value 

that is estimated for the largest possible sub-sample (the one that excludes the lowest 

number of outliers): 3372.0ˆ =θ . 

To further evaluate the estimated θ ,78 it is interesting to compare it to 

estimates on other (international) data sets. To my knowledge, there are three 

comparable estimates in the literature: 

(1) On a balanced panel of US manufacturing firms, Cooper-Haltiwanger 

(2005) estimated 5.0=θ . 

(2) In the previous chapter, using US data, I estimated 6911.0=θ , and 

46.0=θ  for the balanced sub-sample. 

(3) Bayraktar et al. (2005) estimated 34.0=θ  for an unbalanced panel of 

German manufacturing firms. 

                                                           
77 The Hausman-test of endogeneity was significant at the 1% level in case of all specifications. This 
finding is reasonable: capital itself also depends positively on the profit. 
78 Since θ  is a key parameter to identify profitability shocks, it is important to have a reliable 
estimate of it. Although shocks identified with different θ -s are strongly correlated, θ  is important 
as it influences the variability of the profitability shock, and also the structural cost parameters 
themselves. 
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Therefore my estimate of parameter θ  seems to be much below comparable 

estimates for US manufacturing firms, but is in line with the findings for Germany. It 

seems that profits are much more responsive to capital in the US. (The investigation 

of the reasons of this phenomenon is beyond the scope of this chapter.) 

To further the estimated θ  parameter, I also estimated it for the different 

manufacturing sub-sectors (this time I only used the IV method on the shifted log-log 

model). It is apparent on Figure 5.2 that in those sectors that we think to be relatively 

more capital-intensive (chemical industry, machinery), I obtain somewhat larger 

estimates, with the interpretation that profit is more responsive to capital in these 

sectors. Figure 5.2 also suggests that outliers do not have large impact on the relative 

size of estimated industry-specific θ -s, a similar finding that was also true for the 

whole manufacturing industry. 
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Figure 5.2. Estimated θ  (IV-method) by industries. 

 

To investigate the stability of the estimated parameters over time, I divided 

the data set to two further sub-samples: one early sub-sample containing observations 

between 1993-1997, and another sub-sample with observations between 1998-2002. 
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It is apparent on Figure 5.3 that the estimates on the whole sample (1993-2002) are 

mainly driven by the estimates between 1998-2002, while the estimates based on the 

early period of 1993-97 are relatively more different. There are two possible 

explanations of this: 

(1) Observations in the early years (1993, 1994) are noisy; a similar 
hypothesis was set up by Kátay-Wolf (2004);79 

(2) Firms behaved differently during the years of transition than later. 
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Figure 5.3. Estimated θ  (IV-method) by industries in different sub-periods. 

 

Based on all of these investigations, I accept the estimate of 3372.0ˆ =θ , and 

identify the profitability shocks accordingly. As profit, capital and wage bill 

variables are all available in the data set, I can now calculate both type-1 
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shocks. 

Similarly to what I have done in chapter 4, and in order to mimic the rich 

correlation structure80 of the identified profitability shocks, I decomposed them into 

                                                           
79 Kátay-Wolf (2004) also concluded that early data is likely to be relatively less reliable. 
80 Shocks are correlated both over time and among firms. 
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aggregate and idiosyncratic shocks. Aggregate shock is defined as the average 

profitability shock in year t:
t

N

i
it

t N

A
A

t

∑
== 1  (here tN  is the number of observations in 

year t), while idiosyncratic shock is simply 
t

it
it A

A
=ε . 

Table 5.1 contains the properties of the identified type-2 profitability 

shocks,81 and for comparison purposes similar measures from the previous chapter 

are also reported. The results show that profitability shocks seem to be more volatile 

but less persistent in Hungary than in the US. 

 

 Hungary US (Chapter 4) 

Aggregate shock standard deviation 0.1092 0.0822 

Aggregate shock autocorrelation 0.6882 0.9325 

Idiosyncratic shock standard deviation 0.3155 0.2891 

Idiosyncratic shock autocorrelation 0.4033 0.6410 

Table 5.1. Properties of identified type-2 profitability shocks. 

 

Measurement of new investment rates 

 

I measured new investment rates (as opposed to observed gross investment 

rates, the measurement of which is described in the previous section) in three 

alternative ways. Since exact measurement is impossible, all of these are only 

approximations that are based on (reasonable) assumptions.82 

In the first method, I use an average depreciation rate ( )δ  to calculate new (as 

opposed to gross) investment rate: 

                                                           
81 As type-1 shock is much more noisy, following my approach in Chapter 4, I work only with type-2 
shocks in what follows. 
82 In Chapter 4 I only used the third method to measure new investment rates. This will also be the 
preferred method here, but for comparison purposes I report the result with the two alternative 
measurement techniques. 
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• If the observed gross investment rate is bigger than δ , then I assume that 

firms engage in cheap replacement investment activity to reduce the need 

of costly new investment. So in this case there is δ  replacement 

investment (replacing and/or renovating depreciated capital), and thus the 

new investment rate equals the gross investment rate less δ . 

• Alternatively, if the observed gross investment rate is positive, but 

smaller than δ , then firms could make all their investment activities as 

replacement investment, which was in fact in their best interest, since this 

was cost-free. So in this case all investment is replacement investment, 

and new investment is 0. 

• Finally, if the observed gross investment rate is negative, then I assume 

that there was no replacement investment. This is so because if firms did 

have some replacement investment, then their need of costly 

disinvestment (and also their costs) would have increased. 

In the second measurement method I assume that firms always make 

replacement investment that is equal to their observed depreciation, irrespectively of 

whether their current situation is improving or deteriorating. So in this case new 

investment is calculated simply by taking the difference between gross investment 

and depreciation. 

Finally, the third measurement method is a mixture of the previous two 

because it makes distinction between replacement investment activity in 

expansionary and contractionary periods,83 but it does so on the basis of observed 

depreciation (as opposed to an average depreciation rate δ  in method 1): 

• If tt DEPINVEST > , then capital expenditures exceeded depreciation, so 

net capital stock increased. I assume that in this “expansionary” case 

firms undertake as much replacement investment as possible (as this is 

relatively cheap), and only the increase in the value of net capital stock is 

the result of the costly new investment activity. So in this case, 

1−

−
=

t

tt
t CAPITAL

DEPINVEST
NEWINVRATE . 

                                                           
83 That is, when firms expend, they make as much replacement investment as possible, while when 
contracting, they let their capital depreciating. 
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• If 0≥≥ tt INVESTDEP , then the firm’s capital expenditures were 

positive, but since they did not entirely cover depreciation, the firm’s 

former capital stock depreciated to some extent. I assume in this case that 

all capital expenditures were maintenance-type replacement 

expenditures, and therefore 0=tNEWINVRATE . 

• If tINVEST>0 , then the firm is obviously shrinking. It seems to be 

logical to assume in this case that no replacement investment was 

undertaken, as this could have been compensated for only by costly 

capital sales. In this case 
1−

==
t

t
tt CAPITAL

INVEST
INVRATENEWINVRATE . 

Figures 5.4-5.6 illustrate the resulting new investment rate distributions, 

when new investment rates are defined according to the different measurement 

methods. In the following I will use the third measurement of new investment rates 

as a benchmark, since I think that the first method is only an approximation of 

method 3, and the second method leads to implausibly high negative investment rate 

proportions. However, to analyze robustness, in some cases I will also report the 

results that are obtained when using the alternative definitions. 
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Figure 5.4. New investment rate distribution, method 1. 

 

 

Figure 5.5. New investment rate distribution, method 2. 
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Figure 5.6. New investment rate distribution, method 3. 

 

Table 5.2 contains some descriptive statistics of the measured new investment 

rate distribution (method 3). It is apparent that the dispersion of the observed 

investment rates is much higher in Hungary, and therefore the proportion of negative 

investment rates and investment spikes is naturally bigger. The higher inaction rate 

may be due to the higher observed depreciation rates. Nonetheless, all of these may 

simply indicate that the Hungarian data is much noisier. 

 

 Hungary US (Chapter 4) 

Proportion of negative new investments 10.50% 2.45% 

Proportion of inaction 49.64% 42.35% 

Proportion of spikes (>20%) 27.73% 19.89% 

Mean 13.39% 11.84% 

Standard deviation 28.00% 15.10% 

Skewness 1.4984 1.2182 
Table 5.2. Descriptive statistics of the new investment rate distribution (method 3). 

 

Estimation of the reduced-form shock-investment relationship 
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With the identified profitability shocks and investment rates, I can now 

estimate the reduced-form shock-investment relationship, which is the key to identify 

the structural cost parameters. According to equation (9), the specification that we 

estimate is a quadratic one between investment and profitability shocks, with lagged 

shocks also included. The quadratic term is included to capture fixed-cost- and 

irreversibility-induced non-linearity, while the lagged variable captures lumpiness 

(also due to either irreversibility or fixed costs). So the estimated regression is 

 

 itttiititit uaaai +++++= − µφφφφ 1,3
2

210
~~~~ . (4.9) 

 

Table 5.3 contains the estimated parameters of this regression for alternative 

measurements of new investment rate. It is apparent from the table that estimated 

parameters are robust to the way of measurement of the new investment rate. The 

only exception is 2̂φ , which is much lower in case of method 1 than for alternative 

methods. This probably means that the assumption of an average depreciation rate 

(for calculating method 1 new investment rate) is not appropriate. 

Table 5.3 also contains the estimated parameters of the same reduced-form 

regression for US data, as reported in Chapter 4. The structure of the estimated 

parameters is surprisingly similar. 

I will use these estimated parameters (together with observed inaction rate 

and observed investment rate distribution skewness) to identify the structural cost 

parameters of the theoretical model. 

 



 78

 Method 1 Method 2 Method 3 US (Chapter 4) 

Estimated 1φ  0.1343 
(0.0099) 

0.1466 
(0.0106) 

0.1354 
(0.0097) 

0.1150 
(0.0085) 

Estimated 2φ  0.0297 
(0.0216) 

0.0784 
(0.0234) 

0.0723 
(0.0214) 

0.0822 
(0.0147) 

Estimated 3φ  -0.0369 
(0.0080) 

-0.0368 
(0.0084) 

-0.0343 
(0.0076) 

-0.0251 
(0.0081) 

Number of firms 12,918 12,984 12,984 1,554 

Number of observations84 50,470 51,485 51,485 23,413 

Table 5.3. Estimated reduced regression parameters (with standard errors) for alternative new 

investment rate measurement methods. 

 

5.3. Estimation of the structural cost parameters 

 

As before, I identify the structural cost parameters by matching the 

parameters of the theoretical shock-investment relationship, the theoretical inaction 

rate and the theoretical investment rate distribution skewness to empirically observed 

values reported in the previous section. The parameters of the theoretical shock-

investment relationship, the theoretical inaction rate and the theoretical investment 

rate distribution skewness are obtained by simulating the theoretical model for 

arbitrary cost parameters ( )pF ,,γ . The simulation, as in Chapter 4, involves the 

following steps: 

Step 1. Determine the value and policy functions of the theoretical model for 

arbitrary cost parameters ( )pF ,,γ . I solve the model by value function iteration on 

fine grids with respect to the state variables ( )KA, , and assuming that shocks have 

the same distribution as observed from data.85 I also assume that 95.0=β  and 

                                                           
84 The number of observations is larger when we measure investment rate according to methods 2-3, 
based on observed depreciation (as opposed to an average depreciation rate δ ). The reason of this is 
that in case of method 1, the number of investment outliers (defined as investment rates above 125%) 
is much larger.  
85 Here I used the rich correlation structure of the shocks, by assuming that overall shocks are the sum 
of aggregate and idiosyncratic shocks, with standard deviations and autocorrelations reported earlier. 
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07.0=δ , where the latter is an average depreciation rate reported by Kátay-Wolf 

(2004).86 

Step 2. With the policy functions obtained in Step 1, simulate artificial data 

sets of the same size as the original data set. As a starting point, I simulate 

profitability shocks, using again the observed distribution of shocks. Then I use the 

policy function obtained in Step 1 to simulate the capital paths of the hypothetical 

firms in the artificial data set, and calculate the corresponding investment rates. 

Step 3. Estimate the reduced-form shock-investment relationship in the 

simulated data set, and also the inaction rate and the investment rate distribution 

skewness. 

Step 4. Choose a cost parameter vector ( )pF ,,γ  for which the distance 

between simulated and observed reduced-regression parameters, inaction rate and 

investment rate distribution skewness is the smallest. 

Table 5.4 illustrates that for cost parameters 0001.0=F , 22.0=γ , 

991.0=p , the simulated reduced-regression parameters, inaction rate and 

investment rate distribution skewness are quite closed to their observed values. In 

fact I found that the distance between the simulated and observed values (weighted 

by the inverse of the standard deviation of each estimate) is the smallest for this 

vector of cost parameters, which means that this is my estimate for the structural cost 

parameters. 

 

                                                           
86 In principle, these are also structural parameters of the model, so in fact one should estimate them 
jointly with the other structural parameters. But since the focus of this paper is on estimating the 
structural cost parameters, I decreased the dimension of the parameter vector to be estimated to 3. 
This leads to a considerable reduction computation time. 
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 Observed Simulated 0001.0=F , 22.0=γ , 991.0=p  

Reduced regression 1φ  0.1354 0.1207 

Reduced regression 2φ  0.0723 0.0540 

Reduced regression 3φ  -0.0324 -0.0669 

Non-positive investments 60.15% 60.02% 

Investment rate skewness 1.4984 1.4872 

Table 5.4. Observed and simulated reduced regression parameters, non-positive investment rates and 

investment rate distribution skewness for “best” cost parameters. 

 

Table 5.5 reports the estimated structural cost parameters and their standard 

errors for various cases. If I specify the cost function with only convex costs (column 

4), the estimated convex cost is relatively high ( 7605.0ˆ =γ ), but the distance of the 

simulated statistics from their observed counterparts is quite high (150.14). 

Allowing for the existence of fixed costs (column 3), this distance decreases 

substantially (to 50.87), indicating that the match improved. The estimated convex 

cost parameter also declines (to 479.0ˆ =γ ), which may interpreted as increasing 

fixed costs compensate for decreasing convex costs. 

If I further generalize the cost structure by allowing for irreversibility costs 

(column 2), then the distance decreases further (by approximately 16%). In this case 

increasing irreversibility costs compensate for decreasing fixed and convex costs, 

while improving the overall match. 
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 Fixed, convex and 

irreversibility costs 

Fixed and convex 

costs 

Only convex costs 

F (fixed costs) 0.000100 

(0.000018) 

0.000119 

(0.000007) 

(0) 

γ  (convex costs) 0.220 

(0.033322) 

0.479 

(0.039347) 

0.7605 

(0.001258) 

p (irreversibility) 0.991 

(0.002376) 

(1) (1) 

DISTANCE 42.61 50.87 150.14 

Table 5.5. Estimated structural cost parameters and standard errors. 

 

As in Chapter 4, the estimated fixed cost parameter – though being 

significant – is numerically small, even if one compares it to similar estimates of 

Cooper-Haltiwanger (2005) )039.0( =F  and Bayrakhtar et al. (2005) )031.0( =F . 

This estimate means that the fixed cost is 1% of the purchase price of a 1% 

investment rate.87 

The estimated convex cost parameter is in line with other results in the 

literature, with Cooper-Haltiwanger (2005) reporting an estimate of 0.049, while 

Bayrakhtar et al. (2005) estimate 532.0=γ . In Chapter 4 I estimated 4462.0=γ  

for US data. 

The estimated irreversibility is significant, but indicates small degree of 

irreversibility, a similar phenomenon that was also observed by the other two 

comparable studies (Cooper-Haltiwanger, 2005 had an estimate of 0.975, while the 

initial version of Bayrakhtar et al., 2005 reported 902.0=p ). This is in contrast of 

the relatively large irreversibility estimated for the US in Chapter 4. It is common in 

the literature that these types of estimates indicate much lower irreversibility than 

direct estimates (Ramey-Shapiro, 2001 and Chapter 3 here). 

                                                           
87 Again, as I normalize the model to the purchase price of capital, an investment rate of 1% costs 
1*0.01=0.01. 
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In order to evaluate the relative significance of the different adjustment costs, 

I investigated the investment costs of certain investment episodes. For example, if a 

firm has a negative investment of -5%, then it has to pay a fixed cost of 0.0001, a 

convex cost of (0.22/2)*(-0.05)*(-0.05)=0.000275, and an irreversibility cost of 

0.009*0.05=0.00045. So the total adjustment cost is 0.000825, or 1.65% of the total 

frictionless sales price (which is 1*0.05=0.05), out of which 12.1% is fixed cost, 

33.3% is convex cost, and 54.6% is irreversibility cost. 

On the other hand, if firms engage in an average investment project observed 

from data (when investment rate is 13.39%), then fixed costs are 0.0001, and the size 

of convex costs is (0.22/2)*0.1339*0.1339=0.001972, so of all adjustment costs, 

95.2% is convex costs and 4.8% is fixed costs.88 

 

5.4. Aggregate implications 

 

In this section I analyze how shocks (from monetary policy, for example) 

affect aggregate investment. To do so, I assume that these monetary policy shocks 

(or other types of shocks) enter the model through the aggregate profitability shock. 

Monetary policy decisions translate to a profitability shock, because changing 

interest rates and/or exchange rates both affect the profitability of firms for obvious 

reasons. I also assume that monetary policy is an aggregate profitability shock 

because it has more or less similar effects on different firms.89 

To fully understand the effect of monetary policy on aggregate investment, 

theoretically we should disentangle two effects: (1) to what extent monetary policy 

affects aggregate profitability;90 and (2) how changes in aggregate profitability affect 

aggregate investment. Naturally, in the current modeling framework one can address 

the second question, and can not say much about the first one. Therefore in the 

                                                           
88 For larger investments, convex costs obviously “take over”. Also, for positive investments there are 
no direct irreversibility costs. 
89 One may argue that this is not necessarily true: firms with higher external financing needs may find 
that a certain increase in interest rates reduced their profitability more dramatically than others. Also, 
firms more exposed to foreign markets may feel exchange rate changes more influential than others. 
Still, I think that the assumption that monetary policy acts like an aggregate profitability shock is a 
good approximation. 
90 Optimally, the answer to this question should look like these statements: a 1 percentage point 
increase of the interest rate decreases aggregate profitability by ??? percents. Or: a 1-percent 
devaluation of the exchange rate changes aggregate profitability by ??? percents. 
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following I investigate the second question, and leave the first one to further 

research.91 

I analyze the aggregate implications of the firm-level results along two 

dimensions. The first comparison is based on the differences between firm-level and 

aggregate behavior. This approach is similar to what I already presented in Section 

4.5, which is in the sense of Caballero (1992): what are the differences between 

micro- and macro-level behavior.92 The second dimension of the comparison is based 

on the differences between the adjustment patterns for different cost structures: when 

there are only convex costs (so the adjustment is smooth), and when all kinds of 

adjustment costs are included into the analysis. So this approach tries to answer the 

question whether the existence of non-convex cost components has any important 

effects on aggregate variables. This analysis is similar to Veracierto (2002), who 

compares the behavior of aggregate variables in two extreme cases: when there is 

complete irreversibility, and when there is no irreversibility.93 

 

Comparison of firm-level and aggregate shock-investment relationship 

 

To compare firm-level and aggregate investment dynamics, I estimated the 

reduced-form regressions (4.9) ( itttiititit uaaai +++++= − µφφφφ 1,3
2

210
~~~~ ) for both 

firm-level and aggregate data, simulated for various cost structures.94 The estimated 

parameters for the different scenarios are in Table 5.6. 

 

                                                           
91 Jakab-Vonnák-Várpalotai (2006) investigate the effect of a monetary policy shock to aggregate 
investment in three alternative models for the Hungarian economy, and find that a 1% monetary 
policy shock (as they define) induces a cumulative change of approximately 0.2% in aggregate 
investment.  
92 The main result of that paper is that even if there is asymmetric adjustment at the micro-level, under 
general conditions (if shocks that hit the firms are not perfectly harmonized) this asymmetry vanishes 
at the macro-level because of aggregation. 
93 The main finding of this paper is that irreversibility is unimportant for the behavior of aggregate 
variables: the evolution of aggregate variables is the same, irrespectively from the degree of 
irreversibility. This result may seem a bit surprising, but it is a direct consequence of the relatively 
low variance of the production shock that hits the plants. For larger shocks, the irreversibility 
constraint would become effective at least in some cases, and also the aggregate behavior of the key 
variables would be different when there is irreversibility. 
94 Of course, while on the firm-level the reduced regression is estimated on a panel, on the aggregate 
level this can only be done on a time series (and for much smaller number of observations). 
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  Only convex costs 
(F=0, γ=0.7605, p=1) 

Convex and fixed costs 
(F=0.000119, γ=0.479, p=1) 

All types of costs 
(F=0.0001, γ=0.22, p=0.991) 

1φ  0.0655 
(0.0030) 

0.0877 
(0.0042) 

0.1281 
(0.0067) 

2φ  0.5069 
(0.3817) 

0.8029 
(0.5353) 

1.3125 
(0.8572) 

3φ  -0.0195 
(0.0030) 

-0.0307 
(0.0042) 

-0.0554 
(0.0067) 

 

 

Aggregate 

level 

N 28 28 28 

1φ  0.0613 
(0.00010) 

0.0822 
(0.00013) 

0.1207 
(0.00017) 

2φ  0.0224 
(0.00023) 

0.0357 
(0.00030) 

0.0540 
(0.00045) 

3φ  -0.0265 
(0.00010) 

-0.0389 
(0.00013) 

-0.0669 
(0.00013) 

 

 

Firm-

level 

N 28*7000 28*7000 28*7000 

Table 5.6. Aggregate and firm-level reduced regression parameters under different cost structures 

(estimated from simulated data sets). Standard errors are in parenthesis. 

 

The results show that the parameters of the linear terms ( 1φ  and 3φ ) have 

similar patterns: they increase (in absolute terms) as we allow for fixed and 

irreversibility costs. Also, the parameter estimates are numerically close to each other 

in these cases. The major difference arises in case of the non-linear term ( 2φ ): 

despite being significant at the firm-level, it becomes insignificant at the aggregate 

level. This result is robust across different cost specifications. 

 

Comparison of convex and non-convex investment cost structures 

 

To analyze the aggregate implications of the non-convex costs of investment, 

I compare the behavior of aggregate variables after certain aggregate shocks for 

different cost structures. 

The first case under my focus will be the one where fixed and irreversibility 

costs are excluded from the analysis, and all the adjustment costs are assumed to be 
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convex costs. According to Table 5.5, the estimated convex cost parameter is 

7605.0=γ  in this case (with 0=F  and 1=p  fixed). 

The second scenario will be the one when there are convex and fixed costs, 

but no irreversibility cost. Under these assumptions I estimated the cost components 

as 479.0=γ  and 000119.0=F  in Table 5.5.95 Intuitively, the effect of convex costs 

is partially taken on by the fixed cost component. 

The third case investigated is the one when all cost components are allowed. 

Earlier I estimated the different cost parameters as 220.0=γ , 0001.0=F  and 

991.0=p . Now the increasing irreversibility costs compensate for decreasing fixed 

and convex cost components. 

To analyze the aggregate effects, I make three experiments for all of these 

three cost structures. In the first experiment, I simulate initial (aggregate + 

idiosyncratic) profitability shocks and corresponding capital paths for 7000=N  

hypothetical firms, assuming that (log) aggregate shocks are 0 during periods 0-100, 

and equal to the standard deviation of the aggregate shock (0.1092, as measured 

empirically) from the 101st time period.96 Idiosyncratic shocks are drawn from the 

same distribution that I observed empirically. So the assumption is that firms are hit 

by a permanent profitability shock at the 101st time period. For simplicity, in the 

following I index this 101st time period as 1=t . 

Figure 5.7 illustrates the effect of this permanent profitability shock on the 

aggregate gross (replacement + new) investment rate.97 The first thing to observe is 

that a permanent profitability shock of 10.92% immediately increases the aggregate 

gross investment rate by only 1.3-2.1%, a relatively moderate rate, and it has a 

cumulative effect of 4-5% during the next 5-6 periods (years). 

It is also interesting to observe that in the presence of non-convex (fixed and 

irreversibility) costs, the aggregate response is higher. This is because if we have 

only convex costs, the estimated convex cost parameter is necessarily higher, which 

“punishes” relatively large investment episodes. On the other hand, in case of all 

                                                           
95 And also noted that the fit of the model has increased dramatically: the “loss” decreased from 
150.14 to 50.87. 
96 Allowing for 100 initial periods ensures that the results are not affected by the initial conditions. 
97 To ease interpretation, the deviation of steady state is depicted on the vertical axis. The steady state 
gross investment rate is equal to the average depreciation rate, and is therefore non-0. 
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types of costs convex costs are relatively lower and non-convex costs are relatively 

higher, so large investment episodes are relatively cheaper. So it is intuitive that in 

case of both convex and non-convex costs, the immediate response to the positive 

profitability shock is somewhat larger, and the impulse response function becomes 

zero relatively earlier. 

So there is an apparent difference between the firm-level and aggregate 

effects of non-convex adjustment costs: while fixed and irreversibility costs make 

investment lumpy at the firm level, aggregate investment is more flexible if we also 

have fixed and irreversibility cost components. 

 

permanent shock: effect on aggregate (gross) investment rates (deviations from steady state)
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Figure 5.7. The effect of a permanent profitability shock on aggregate gross investment rate. 

 

Figure 5.8 depicts the effect of the same permanent profitability shock to the 

aggregate new investment rate. It is apparent from the figure that there are 

differences between the various cases in the steady state aggregate new investment 

rates. Specifically, the steady-state new investment rate98 is relatively larger when 

there are both convex and non-convex investment cost components. This is again 
                                                           
98 The steady-state gross investment rate (which is the average depreciation rate) is held constant in 
the three cases. 
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because relatively lower convex costs and relatively larger non-convex costs make 

larger new investment episodes relatively cheaper. 

 

permanent shock: effect on aggregate (new) investment rates
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Figure 5.8. The effect of a permanent profitability shock on aggregate new investment rate. 

 

In the second experiment I investigate the effect of a transitory profitability 

shock at 1=t  (again, to avoid initial value problems I simulate 100 initial periods). 

Now I assume that the (log) profitability shock is 0 during the initial 100 periods; it 

is 0.1092 (as measured from data) at 1=t , and is again 0 thereafter. Figures 5.9-5.10 

depict the effect of this one-standard-deviation transitory shock to the aggregate 

gross and new investment rates.99 For the gross investment rates, the same story 

emerges as in case of permanent shocks: as convex costs punish large investments 

relatively more, the aggregate response is larger for relatively smaller convex cost 

components (that is, if we allow for all cost components). As for new investment 

rates, the steady state new investment rate is again the largest when convex costs are 

relatively lower; one can observe the largest response in this case. 

 

                                                           
99 In case of gross (replacement + new) investment rate, I again depict deviations from steady-state. 
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transitory shock: effect on aggregate (gross) investment rates (deviations from staedy state)
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Figure 5.9. The effect of a transitory profitability shock on aggregate gross investment rate. 

 

transitory shock: effect on (aggregate) new investment rates
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Figure 5.10. The effect of a transitory profitability shock on aggregate new investment rate. 
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While these experiments are important to improve our understanding of the 

effects of the different investment costs on the behavior of various aggregate 

investment rates, they are not too realistic in the sense that they assume that one can 

have a perfect control of the aggregate shock hitting the firms. In reality no 

institution can alone influence the aggregate profitability shock, so one should not 

assume this. To evaluate the impact of a certain policy (for example, if the central 

bank improves “aggregate profitability” by making the loans cheaper) it is more 

appropriate to assume that the profitability shock remains stochastic (in the sense it 

was stochastic in the previous sections), and the policy-induced permanent shock is 

in addition to this underlying stochastic profitability shock. 

Therefore, as a third experiment, I simulated aggregate investment rates after 

a permanent profitability shock under these circumstances. The underlying stochastic 

aggregate profitability shock was as measured empirically,100 and there is an 

additional positive aggregate profitability shock of 0.1092 from period 101 ( 1=t ). 

Figure 5.11 depicts the behavior of the aggregate gross investment rate (deviation 

from steady state) after such a permanent shock. Obviously, the variance of the 

aggregate gross investment rate over time is much larger in this case than previously, 

as now it also depends on the evolution of the underlying aggregate shock that 

cannot be controlled. Otherwise, this figure is quite similar to the previous figures 

about aggregate gross investment rates: the largest responses occur when convex 

costs are relatively small (and other types of costs are relatively larger). 

Figure 5.12 illustrates the effect of a similar permanent aggregate 

profitability shock to the new investment rates. It is apparent from the figure that 

while the absolute responses are still higher when convex costs are relatively small 

and fixed and irreversibility costs are relatively high, because of irreversibility, the 

aggregate new investment rate is less flexible downward than upward.101 

 

                                                           
100 Its standard deviation and autocorrelation is 0.1092 and 0.6882, respectively.  
101 After clearly worsening aggregate profitability conditions, aggregate new investment rate is 
reluctant to go into the negative regions. 
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permanent shock (1 std): effect on aggregate (gross) investment rates (deviations from steady state)
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Figure 5.11. The effect of a permanent profitability shock (in addition to the regular profitability 

shock) on aggregate gross investment rate (deviation from steady state). For comparison purposes, I 

depict also what would have happened if there was no extra profitability shock (BASELINE). 

 

permanent shock (1 std): effect on aggregate (new) investment rates
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Figure 5.12. The effect of a permanent profitability shock (in addition to the regular profitability 

shock) on aggregate new investment rate. For comparison purposes, I depict also what would have 

happened if there was no extra profitability shock (BASELINE). 
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As a final experiment, I simulated the effect of the same set of permanent 

shocks when the permanent profitability shock is credible and foreseen. This means 

that once a shock (of 1 standard deviation) occurs in period 1, firms know that this 

shock will be permanent and form their expectations about future profitability 

condition accordingly.102 

Figures 5.13-5.14 illustrate the case of a credible permanent profitability 

shock, when perfectly controlled by the authorities (so no aggregate shock that is 

independent from the authorities occurs); one should then relate these figures to 

Figures 5.7-5.8. It is apparent from Figure 5.13 that if the positive permanent 

profitability shock is foreseen, and it enters into firms’ expectations, then its effect is 

much bigger. I reported earlier that if the permanent shock is a surprise shock in each 

period, then the immediate effect of a 1 standard deviation positive permanent shock 

is 1.3-2.1%, and the cumulative effect is 4-5% during the following 5-6 periods. Now 

if the permanent profitability shock is anticipated, then its immediate effect is as high 

as 7.2-11.5%, while the cumulative effect is 24.1-24.3% during the next 10 periods. 

So if authorities can make the intended positive profitability shock foreseen and 

credible, then its effect can be much bigger. 

Also, it is apparent (perhaps even more than before) from the figures that 

aggregate investment is the most responsive to profitability shocks if we have all 

types of investment costs, which is the same result that I reported earlier for 

unanticipated permanent profitability shocks. 

                                                           
102 So far I had an implicit assumption that in case of a permanent shock, it was a “surprise shock” in 
each time period, in the sense that firms did not alter their expectations according to this permanent 
shock. 
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permanent anticipated shock: effect on aggregate (gross) investment rates (dev-s from steady state)
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Figure 5.13. The effect of a permanent anticipated profitability shock on aggregate gross investment 

rate. 

 

permanent anticipated shock: effect on aggregate (new) investment rates
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Figure 5.14. The effect of a permanent anticipated profitability shock on aggregate new investment 

rate. 
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In the most realistic case, when there is a permanent anticipated aggregate 

profitability shock plus an underlying profitability shock that cannot be controlled by 

the authorities, I found the same patterns: relative to what was reported on Figures 

5.11-5.12, the effect of the extra profitability shock is higher. This is again a direct 

consequence that the firms now anticipate positive future profitability shocks and 

form their expectations accordingly. On the other hand, it still remains true that 

aggregate (gross and new) investment rates are the most responsive to shocks if there 

are both convex and non-convex cost components (relative to the case if there is only 

convex adjustment cost). 

 

So the earlier finding is robust across different specifications of artificial 

shocks: the response of aggregate investment under both convex and non-convex 

investment costs to certain profitability shocks is more flexible than if there are only 

convex adjustment costs. 

To further study the dynamics of investment adjustment under different cost 

structures, it may be useful to track the distribution of firm-level adjustments after a 

profitability shock. The observed inaction rate can be particularly interesting after 

such a hypothetical profitability shock. Figure 5.15 illustrates the inaction rate (the 

proportion of firms that stay inactive) after a permanent profitability shock.103 As I 

already demonstrated on Figure 5.7, adjustment is quicker (that is, aggregate 

investment rate is higher in the first 3-5 periods after the shock) when all types of 

adjustment costs arte present, as opposed to having only convex costs. It is also 

apparent on Figure 5.15 that this quicker adjustment takes place mainly on the 

intensive margin: higher aggregate investment rates occur at similar inaction rates, 

from which one can infer: (1) if all types of adjustment costs are present, those firms 

that adjust must make relatively larger adjustments than in case of only convex 

costs,104 and (2) those firms that remain inactive when there are only convex costs, 

also tend to remain inactive if we have all types of adjustment costs. Experimenting 

with the other types of aggregate profitability shocks investigated earlier (transitory 

                                                           
103 In this case I assume that there are no other sources of aggregate uncertainty: aggregate 
profitability increases by exactly one standard deviation from 1=t . So in terms of shock structure, 
Figure 5.13 corresponds to Figure 5.7. 
104 In fact, it is apparent from Figure 5.13 that when we have all types of adjustment costs, the larger 
aggregate adjustment (illustrated on Figure 5.7) takes place at a slightly higher inaction rate. 
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and extra profitability shocks, both surprise and anticipated case) leads to the same 

conclusion: adjustment takes place at the similar inaction rates under the different 

cost specifications, so adjustment takes place on the intensive margin also in these 

cases.105 These are all further pieces of evidence that non-convex adjustment costs 

have important effects on aggregate dynamics. 
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Figure 5.15. The effect of a permanent profitability shock on aggregate the proportion of inactive 

firms. 

 

When tracking the inaction rates under different cost structures, one may ask 

how inaction occurs at all when there are only convex costs of adjustment. Indeed, 

standard investment models with convex adjustment cost suggest that in this case 

there is no inaction at all. However, if one makes distinction between replacement 

investment and new investment, then inaction in new investment can emerge easily, 

especially if the convex cost component is high. The reason of this is that convex 

costs make the shock-investment relationship flat, and therefore for a large interval 

                                                           
105 An interesting result is that when aggregate profitability shocks are anticipated, then the inaction 
rate decreases to less than 5% (under all types of cost structures). So in this case basically all firms 
adjust in the light of much their favorable future profitability conditions. 
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of shocks the optimal gross investment rate will be between 0 and the depreciation 

rate, meaning that the new investment rate is zero in these cases. This phenomenon is 

also observable on Figure A/4. in Appendix A, where the optimal shock-investment 

relationship is depicted for the case of “only convex costs”. With a relatively modest 

convex cost parameter (in that figure 2.0=γ ), the inaction rate of new investments 

is already visible. The case that is discussed here has much higher convex cost 

parameter: 7605.0=γ , therefore the shock-investment relationship is much flatter, 

so it is not a surprise that the inaction in new investment rates is as high as 60% in 

steady state. 

All of these simulations suggest that there are important aggregate 

implications of the non-convex investment costs. This statement contradicts the main 

conclusion of Veracierto (2002), who found that there is no aggregate implication of 

investment irreversibility at the plant level. But this difference can be fully explained 

with the difference between the magnitudes of identified profitability shocks. In this 

paper, the standard deviations of the aggregate and idiosyncratic profitability shocks 

are 0.1092 and 0.3155, much larger than the standard deviation of the productivity 

shock in Veracierto (2002): 0.0063.106 As a consequence of this, the irreversibility 

constraint is effective for many observations in the simulations, while it is never 

binding for Veracierto; as he notes, this is the ultimate reason of the opposite 

conclusions. Studies with comparable shock standard deviations (Coleman, 1997, 

Faig, 1997, and Ramey-Shapiro, 1997) all find important aggregate effects of 

irreversible investment. 

                                                           
106 There are important differences between the identification of these standard deviations. First and 
most importantly, Veracierto (2002) deals with productivity shocks, and identifies them from 
observed Solow-residuals. On the other hand, our key concept is the profitability shock, which 
incorporates Veracierto’s productivity shock, and many other sources of shocks: labor shares, demand 
elasticities, wages. 
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6. SUMMARY 
 

The focus of this dissertation is on various costs components associated with 

investment activity at the firm level, with a special emphasis on the non-convex 

investment costs. In Chapters 3-5 I presented empirical investigations about these 

components, and now I summarize the main innovations and findings of these. 

In Chapter 3 I use a complete asset auction data collected at a discontinuing 

manufacturing firm, to measure the extent of irreversibility at the firm level. Though 

the estimation strategy that I follow is due to Ramey and Shapiro (2001), the results 

indicate some novel elements that have not been discussed previously. In particular, I 

find that an alternative specification (a different from the one used by Ramey-

Shapiro) of the discount structure is more appropriate: the log-log specification of the 

sales price–replacement value equation indicates that the size of discount (in 

percentage terms) to be paid at capital sales is increasing with the size of the capital 

item being sold.107 Further, incorporating this result into theoretical models of 

investment with more general adjustment cost functions, this finding indicates that 

the investment adjustment cost function is asymmetric. This, however, does not have 

qualitative implications on the investment behavior; the model with an asymmetric 

adjustment cost function is only quantitatively different from the one with a 

symmetric cost function.108 

Otherwise, the results of the analysis of firm-level irreversibilities in Chapter 

3 are similar to the results of comparable studies in the literature, in the sense that I 

find that various capital items can only be sold at significant discounts, and that this 

discount is influenced by the specificity of the assets. The more specific items sell at 

higher discounts on average. 

In contrast to Chapter 3, where I focus exclusively on the irreversibility costs 

of investment, the goal of Chapter 4 is to simultaneously estimate the most important 

cost components of investment by the structural estimation of the key cost 

parameters of a dynamic investment model. The approach of Chapter 4 is novel in 

                                                           
107 Ramey and Shapiro noticed this, but they left it unexplained. One can interpret this result by noting 
that size itself can be a means of specificity: a larger capital item is inherently more specific than a 
smaller one. 
108 As we explained in Chapter 3, size-dependent discount rates lead to “more convex” adjustment 
cost function at the negative side, which in turn does not have dramatic effects on firm-level 
investment behavior, but changes the firms’ responses quantitatively (by widening the inaction band, 
for example). 
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two respects. First, I modify the standard firm-level investment model with 

adjustment costs (see Abel and Eberly, 1994 and Bertola and Caballero, 1994) by 

making explicit distinction between “cheap” replacement investment and “costly” 

new investment. As I argue, this is necessary as one can only observe the sum of 

these two types of investments empirically, and it may not be appropriate to treat all 

empirically observed investment as costly new investment. (If one did so, then it 

would be impossible to reject the models of fixed costs and hence also lumpy 

investment at the firm level right away, by observing that the mode of the empirical 

investment rate distributions is generally around at an investment rate of 6-10%.) 

The second innovation in Chapter 4 is that I estimate the structural 

parameters of this “modified” model of firm-level investment by an altered version 

of the usual indirect inference technique. As I argue in section 4.2, this modification 

is necessary as the traditional estimation strategy (based on the traditional reduced 

regression presented there) does not lead to a full identification of all structural 

model parameters.109 

So in the estimation part of Chapter 4, I use an unbalanced panel of US 

manufacturing plants between 1959-87. According to my modified estimation 

strategy, I estimate a reduced form shock-investment regression that captures the 

effects (nonlinearity, lumpiness) of the fixed, convex and irreversibility cost 

components, and I also match the proportion of non-positive investment rate and 

skewness of investment distribution in real and simulated data. 

My results in Chapter 4 indicate that fixed costs may be an economically 

significant factor for the firms’ investment activity, although their magnitude is 

relatively small if compared to the firms’ capital stock. On the other hand, I find 

evidence of non-perfect reversibility: I estimate that firms in our panel data set (that 

are not necessarily closing firms, as in Ramey and Shapiro (2001) and also in 

Chapter 3 of this dissertation) can sell their used capital at significantly lower prices 

than the purchase price. The estimated irreversibility parameter is somewhat smaller 

than in comparable studies (Bayraktar, Sakellaris and Vermeulen (2005), and 

Cooper and Haltiwanger (2005)), indicating that the extent of irreversibility may be 

higher than thought earlier. Overall, my parameter estimates support the generally 

                                                           
109 In particular, I argue that the traditional method does not identify the fixed cost parameter of the 
investment cost function. 
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accepted view about firm-level investment activity: there are investment peaks 

followed by periods of inactivity. 

In Chapter 4 I also presented some evidence that firm-level investment 

behavior is different from what one observes on the aggregate level: if one estimates 

similar shock-investment regressions at the firm- and on the aggregate level at the 

same time, the main difference is that the firm-level non-linearity is averaged out at 

the macro level. Simple descriptive statistics (persistence, volatility, correlation with 

shocks) also indicate important differences in the two cases. 

The main goal of Chapter 5 is to elaborate on the aggregate effects and 

importance of different firm-level investment costs, and investigate the policy 

implications of the earlier results. In particular, I address the question of how certain 

shocks (stemming from monetary policy, for example) translate into changes in 

aggregate investment. To do this, I use another panel on Hungarian manufacturing 

firms between 1992-2002 to estimate the structural parameters of the earlier model, 

and then simulate hypothetical investment paths following certain types of shocks. In 

particular, I argue that as in my modeling framework changes in monetary policy (for 

example) influence the aggregate profitability of the firms, it is necessary to 

investigate how changes in aggregate profitability influence aggregate investment. I 

find that in Hungary, aggregate investment responses are moderate to unanticipated 

aggregate profitability shocks. But if the aggregate profitability shock is anticipated 

and fully credible, then the aggregate investment response can be significant. 

Further, these aggregate responses are different under different cost structures: the 

transition to the new steady state is quicker if there are both convex and non-convex 

adjustment costs. This is exactly the opposite of what happens at the firm level, 

where non-convex adjustment costs make investment more lumpy. The main reason 

of this is that if we do have non-convex adjustment costs, then (according to the 

controlled experiments) the proportion of inactive firms is roughly the same as in 

case of convex adjustment costs, but the average size of investment of those active 

firms is higher (exactly because the non-convex adjustment costs “punish” relatively 

large investments less). 
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Appendix A 

 

Investment functions with different simple cost structures 
Figure A/1 illustrates the investment-shock relationship in the cost-free case. 

)1,0,0( === pF γ . We see that investment is non-zero whenever the shock is non-
zero, that is, we have instantaneous adjustment. We see that this function is slightly 
convex even in this case. This reflects the law of diminishing returns for the capital: 
when a large shock increases the marginal value of capital ( q ), we need a 
proportionally higher increase in the capital stock to restore the optimality condition 
of β/1=q ; therefore the shock-investment relationship is slightly convex: 

5233.2ˆ1 =ψ , 4384.0ˆ 2 =ψ , 5151.2ˆ 3 −=ψ . We also see that as investment is cost-
free, investment rates are relatively high even for small shocks: a typical profitability 
shock (of one standard deviation, 0822.0~ =a ) triggers a 21.04% (2.5233*0.0822 + 
0.4384*0.0822*0.0822) investment rate. 

Figure A/2: the case of partially irreversible investment )95.0,0,0( === pF γ . 
Observe that irreversibility creates an inaction region, but the investment function 
remains continuous: small investments are still possible. Because of the inaction 
region, the shock-investment relationship became more convex, and as capital sales 
became more expensive, we need very large negative shocks (<-60%) to induce 
negative investments. The estimated parameters of the usual reduced form regression 

8520.0ˆ1 =ψ , 3928.0ˆ 2 =ψ , 5564.0ˆ 3 −=ψ . Convexity is stronger (the relative size of 

2ψ̂  increased), and the absolute value of the parameters decreased, so effect of 
profitability shocks is much smaller (a 1 standard deviation profitability shock, 

0822.0~ =a  leads to 7.27% = 0.8520*0.0822 + 0.3928*0.0822*0.0822 investment). 

Figure A/3: we have convex cost of investment )1,2.0,0( === pF γ . We see that 
investment is instantaneous (any shock leads to investment activity), but as the 
marginal cost increased, it is of smaller magnitude (the function became flatter). 
Estimated reduced regression parameters: 4657.0ˆ1 =ψ , 0672.0ˆ 2 =ψ , 

2557.0ˆ 3 −=ψ , so a 1 standard deviation profitability shock leads to an investment 
rate of 3.87% (0.4657*0.0822 + 0.0672*0.0822*0.0822), which is much smaller than 
in the frictionless case. 

Figure A/4: investment function with fixed costs )1,0,001.0( === pF γ . This is 
basically the same as in the frictionless case, but firms do not undertake small 
investments, when the net gain is smaller than fixed costs. So fixed costs create an 
inaction region, and also lead to discontinuity (as no small investment activity is 
observed). The estimated parameters of the reduced form regression (9) are: 

4475.2ˆ1 =ψ , 4423.0ˆ 2 =ψ , 4165.2ˆ 3 −=ψ , which is very similar to the frictionless 
case. This result is intuitive, as the graph of the investment function has not changed 
dramatically. A 1 standard deviation profitability shock leads to an investment rate of 
20.42% (2.4475*0.0822 + 0.4423*0.0822*0.0822), which is also similar to the 
frictionless case. 
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investment rate as a function of log(shock), K is at steady state
no investment costs (F=0, gamma=0, p=1)
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Figure A/1. The investment function in the costless case 

 

 

investment rate as a function of log(shock), K is at steady state
irreversibility costs (p=0.95, F=0, gamma=0) vs nocost case
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Figure A/2. The investment function if there is (partial) irreversibility 
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investment rate as a function of log(shock), K is at steady state
convex costs (gamma=0.2, F=0, p=1) vs nocost case
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Figure A/3. The investment function if there is a convex cost of investment 

 

 

investment rate as a function of log(shock), K is at steady state
fixed costs (F=0.001, gamma=0, p=1) vs nocost case
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Figure A/4. The investment function if there is a fixed cost of investment 
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Appendix B 

 

Methodology to estimate the curvature of the profit function 
 

We want to estimate θ  in the profit function: 

 ititiit KA εθ +=Π , (A1) 

where itΠ  and itK  are the profit and capital of firm i at year t, respectively, iA  is a 
firm-specific scaling parameter of the profit function, and itε  is a well-behaving error 
term. To estimate parameter θ , we have to solve 

 ( ) min,

2 ⎯⎯→⎯−Π∑∑ iA
i t

itiit KA θ
θ . (A2) 

First-order condition with respect to θ : 

 ( )( ) 02 1 =−−Π −∑∑ θθ θ iti
i t

itiit KAKA , (A3) 

that is, 

 ∑ ∑∑ ∑ −− =Π
i t

iti
i t

ititi KAKA 1221 θθ . (A3’) 

First-order condition with respect to iA : 

 ( )( ) 02
1

=−−Π∑
=

iT

t
ititiit KKA θθ , (A4) 

or 

 ∑∑ =Π
t

iti
t

itit KAK θθ 2 , (A4’) 

therefore 

 
∑
∑Π

=

t
it

t
itit

i K

K
A θ

θ

2 . (A5) 

If we substitute (A5) back to (A3’), then we obtain an equation for θ̂ . 
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Appendix C 

 

Variable definitions♦ 
 

NPLANT: capital stock. “The net value of the plant adjusted for inflation. This 
quantity is obtained by multiplying the book plant value by the ratio of the 
GNP deflator for fixed nonresidential investment in the current year to GNP 
deflator AA years ago. AA is the average age of the plant and equipment for 
this firm which is deduced in the following manner: an average age series is 
obtained as the ratio of accumulated depreciation (gross plant minus net 
plant) to depreciation this year. This assumes straight-line depreciation…” 

UFCAP: capital purchases. “Compustat data item #128, capital expenditures (from 
statement of changes).” 

SFPPE: capital sales. “Compustat data item #107, sale of plant, property and 
equipment (from statement of changes).” 

INVEST: alternative investment measure, not used because we want to exclude 
acquisitions. “Compustat data item #30, capital expenditures (gross 
investment). The amount spent for the construction and/or acquisition of 
property, plant and equipment, including that of purchased companies 
(acquisition).” 

ADJDEP: depreciation (to calculate new investment rate). “This year’s depreciation 
adjusted for the effects of inflation. This variable is DEPREC deflated by 
the ratio of the GNP deflator for fixed nonresidential investment AA (see 
NPLANT for a definition of AA, average age) years ago to the current GNP 
deflator.” 

OPINC: profit variable, before depreciation, which is consistent with expression 
(12). “Compustat data item #13, operating income before depreciation.” 

SALES: sales revenue, a weighting variable for NLLS-estimation of parameter θ  in 
Appendix B. “Compustat data item #12, net sales. This is the amount of 
actual billings to customers for regular sales completed during the period, 
reduced by cash discounts, trade discounts, and returned sales for which 
credit is given to customers. Interest and equity income from unconsolidated 
subsidiaries, non-operating income, and income from discontinued 
operations are excluded.” 

EMPLY: number of employees. (Wage bill is unavailable.) “Compustat data item 
#29, number of employees. This is the number of company workers as 
reported to shareholders. It may be an average throughout the year or an 
end-of-year number; the latter is reported if both are given. It includes part-
time employees and the employees of consolidated subsidiaries.” 

                                                           
♦ Variable definitions are quoted from Hall (1990), pp. 13-22. 
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Appendix D 

 

The responsiveness of matched parameters to the structural cost parameters 
 

In Section 4.2 it is claimed that the reduced-regression parameters do not 
contain any information based on which one could identify F , the fixed cost of 
investment. The main argument behind this is that in the frictionless case (when 

1,0,0 === pF γ ), changing F  does not lead to changes in the estimated reduced 
regression parameters. This claim is also intuitive from Figure A/4 in Appendix A. 

This is, however, only a “local” finding for the frictionless case, and it still 
remains to be seen that something similar happens for changes in the fixed cost 
parameter when the other types of costs (convex, irreversibility costs) are non-zero. 
To investigate this, my focus is on the following matrix: 
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⎥
⎥
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φ
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φφ

φ
γ
φφ

φ
γ
φφ

. 

When using indirect inference, it is common to refer to this matrix as the 
binding matrix. It shows how sensitive are the matching parameters to the structural 
parameters to be estimated. In fact, as Gourieroux et al. (1996) show, the variance-
covariance matrix of the estimated structural parameters is proportional to 
[ ] 11ˆ −−Ω′ BB , where Ω̂  is simply the variance-covariance matrix of the matching 
parameters (reduced-regression parameters in our case), as estimated from the data. 

Now it is easy to see why it is a problem if the reduced regression parameters 
are not sensitive to one of the structural parameters. In the frictionless case, I find 

(locally) that 
F∂

∂ 1φ , 
F∂

∂ 2φ , 
F∂

∂ 3φ
 are zero (or they are very close to that when calculated 

numerically), so the first column of the binding matrix is zero, so the estimated 
standard error of the fixed cost parameter is infinite. 

Since it is impossible to prove globally that one particular column of the 
binding matrix is (sufficiently close to) zero, I numerically investigated this binding 
matrix for some triplets of the structural cost parameters. For example, for 

991.0,22.0,0001.0 === pF γ  (this is the estimated cost structure for the Hungarian 
data in Chapter 5) the binding matrix is 

⎥
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⎢
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⎣

⎡

−
−−

−−

50.1245.030
05.2050.075

85.1315.035
. 
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These numbers have to be compared according to the scaling of the model. 

For example, one would think that 351 −=
∂
∂

F
φ  is relatively high (in absolute terms), 

but taking into account the scaling, a typical change in F  is very small: a 1% 
increase in F  (0.000001) would decrease 1φ  by 0.000035 (approximately). In 
contrast, as a result of a 1% increase in γ  (0.0022), 1φ  would decrease by 0.000690 
(approximately), a 20-times bigger effect. And also, a 1% increase in the extent of 
irreversibility (i.e. the change of p from 0.991 to 0.99091, by 0.00009) would 
decrease 1φ  by 0.000167, a 5-times bigger effect again. 

In other words, while the entries in the first column of the binding matrix 
seem to be bigger (in absolute terms), they are not sufficiently bigger to bring down 
the estimated standard error of F  to such a low level so that the estimated F  would 
become significant. Indeed, if I try to estimate the structural cost parameters only on 
the basis of the reduced regression, then the estimated fixed cost parameter is 
insignificant. 

In this case, the introduction of the inaction rate (and skewness) ensures the 
identification. If we include these into the set of the matching parameters, then the 
first column of the binding matrix (whose shape is now 5x3) is 
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⎢
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⎣

⎡ −

680
45000
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It is intuitive that 
F

inaction
∂

∂  is positive: increasing fixed costs obviously 

increase the inaction rate. But now the magnitude of this positive parameter is 
enough to bring down the estimated standard error of the fixed cost to a level when 
the estimated fixed cost becomes significant. 

I did these numerical calculations for a wide range of structural parameter 
sets (including all parameter sets that are reported as estimated cost parameters 
anywhere in the paper), and I found that the results were as I explained here for 

991.0,22.0,0001.0 === pF γ . So it seems to be the case that it is a global 
phenomenon that the reduced regression alone does not identify (or at least poorly 
identifies) the fixed cost parameter, and it is the inaction rate (and skewness) that 
brings identification to this type of cost parameter. 


