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About this talk...

This is not a talk about:
1. The General Data Protection Regulation
2. Theoretical machine learning
3. Privacy

This is a talk about:

1. Some intuition
2. Applied machine learning
3. Graph representation learning
4. Raising awareness
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A made up threat about machine learning
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The real threat about machine learning
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Graph representation learning

Let G = (V ,E ) be the graph of interest. The graph representa-
tion learning method is a mapping z : V → Rd where d is the
dimensionality of the representation space.

Figure 1: Representation learning happens by doing unsupervised or
semi-supervised learning.
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Graph embeddings

Let us take inspiration from word representation learning. Namely
we take a look at Word2Vec.1

1(Mikolov et al., 2013)
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The DeepWalk idea

Nodes that are close in a random walk should have similar represen-
tations in the embedding space (Perozzi et al., 2014).

a

b c

d e

a− b − c − d − c − d − e − c − d − c − d

e − d − e − d − c − d − e

b − a− c − d − a− b − a− c − b − c − d

Figure 2: Example graph with linear vertex sequences.
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Setting up an optimization problem

The representation vector specific to node v is z(v). The optimiza-
tion problem of interest is given by:

min
z

∑
v∈V
− logP(NS(v)|z(v)). (1)

After a number of transformations and an inner product parametriza-
tion we get the following:

min
z

∑
v∈V

ln(∑
u∈V

exp(z(v) · z(u))

)
−

∑
ni∈NS (v)

z(ni ) · z(v)

 . (2)
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On complexity and application

Create an embedding takes:

O(|V |×Dimension×Sequence length×Window size×Samples per node)

Figure 3: We first create an embedding – this is unsupervised. The
features can be used for downstream learning.
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Case Study I.: FabSwingers
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Performance under sparsity
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Figure 4: Classification performance on the safe sex preference task
measured by area under the ROC curve. Each point was calculated from
10 random train-test splits.
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Scalability
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Figure 5: Sensitivity of optimization and random walk sampling runtime
to graph size measured by seconds. Training on 215 nodes takes 40
seconds.
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Noise tolerance
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Figure 6: Sensitivity of the classification performance to the presence of
noisy relationships on the safe sex task. Each point was calculated from
10 graphs with random edges.
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Nice properties and limitations

Nice properties:
1. Totally unsupervised feature extraction.
2. Easy to distribute (sampling and optimization).
3. You can use more advanced tools from neural language

understanding (e.g. recurrent neural networks).
Not so nice properties:

1. Not transferable learning.
2. Handling dynamic networks is cumbersome.
3. Uses a lot of memory.
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Graph convolutional neural models2

Each node in G filters the signal X with the weights W1 and messages
the neighbors:

Z1 = f1(G,X,W1)

This abstract signal is filtered again:

Z2 = f2(G,Z1,W2)

Finally, we aggregate once again to predict the label of nodes:

Ŷ = Aggregate(Z2,W3)

We want to minimize the cost of mislabeling nodes:

minimize L(Y, Ŷ)

2(Kipf & Welling, 2016)
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Scaling it up.

Figure 7: First, let us sample fixed-size neighborhoods from each node.
Second, build a model which classifies the neighborhoods. For details see
Hamilton et al. (2017).
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Case Study II.: Deezer leak
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Predictive performance

Deezer Social Networks

Croatia Hungary Romania
Factorization 0.128

(±0.007)
0.072

(±0.007)
0.051

(±0.004)

DeepWalk 0.173
(±0.006)

0.120
(±0.006)

0.087
(±0.008)

DeepWalk + Factorization 0.215
(±0.006)

0.153
(±0.004)

0.114
(±0.003)

Planetoid 0.230
(±0.006)

0.169
(±0.004)

0.132
(±0.006)

Cold Start GCN 0.288
(±0.005)

0.213
(±0.004)

0.186
(±0.005)

GCN 0.328
(±0.006)

0.244
(±0.004)

0.213
(±0.006)

Resampled GCN 0.333
(±0.002)

0.250
(±0.002)

0.215
(±0.002)

Table 1: Predictive performance of graph convolutional models on the
Deezer song datasets measured by Precision@100. Each experiment was
repeated 10 times – standard deviations in the parentheses.
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Transfer learning

Target country

Croatia Hungary Romania
Croatia – 0.231

(±0.004)
0.198

(±0.007)

Source Hungary 0.317
(±0.006)

– 0.196
(±0.006)

Romania 0.315
(±0.005)

0.232
(±0.004)

–

GCN 0.328
(±0.006)

0.244
(±0.004)

0.213
(±0.006)

Table 2: Transfer learning performance on the Deezer social networks
measured by Precision@100. Each experiment was repeated 10 times –
standard deviations in the parentheses.
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The double cold start problem

Known songs Unknown songs

Unknown user behaviour

Known user behaviour

Figure 8: How can we recommend songs that nobody listened to? How
can we recommend music to people who never revealed their preferences?

The Peril and Promise of Machine Learning
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Mapping to song space

Figure 9: We can learn a mapping from spectral song representations to
factors (van den Oord et al., 2013). We assume that we have the first 30
seconds of every song in advance.
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Performance under double cold start

Deezer Social Networks

Croatia Hungary Romania
Factorization 0.128

(±0.007)
0.072

(±0.007)
0.051

(±0.004)

Double cold model 0.102
(±0.001)

0.055
(±0.001)

0.027
(±0.001)

Table 3: Predictive performance of the factor mapping model. Each
experiment was repeated 10 times – standard deviations in parentheses.
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Scalability
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Figure 10: Sensitivity of training and scoring runtime to graph size
measured by seconds. Training on 215 nodes takes 10 minutes, and
scoring on the same number of nodes takes approximately 1 minute.
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Summary

You can learn easily from social context about users and make
inference even when labels are sparse.

Specifically:
I Inferring things about You that You never made public is quite

easy if I know Your friends.
I Learning on graphs is linear in the number of nodes.
I It even works when you have metadata on a handful of people.
I Features extracted are transferable.
I You can solve cold-start scenarios.
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