The Peril and Promise of Machine Learning

Benedek Rózemberczki

The University of Edinburgh Center for Doctoral Training in Data Science

15.05.2018.

About this talk...

This is not a talk about:

- 1. The General Data Protection Regulation
- 2. Theoretical machine learning
- 3. Privacy

This is a talk about:

- 1. Some intuition
- 2. Applied machine learning
- 3. Graph representation learning
- 4. Raising awareness

A made up threat about machine learning

Facebook chief executive Mark Zuckerberg has supported AI development CREDIT: REUTERS

Graph convolutional networks

FACEBOOK

No, Facebook Did Not Panic and Shut Down an Al Program That Was Getting Dangerously Smart

Tom McKay 7/31/17 8:31pm + Filed to: SKYNET ~

Graph convolutional networks

Summary

References

The real threat about machine learning

Graph convolutional networks

The Peril and Promise of Machine Learning

Graph convolutional networks

Summary

References

Graph representation learning

Let G = (V, E) be the graph of interest. The graph representation learning method is a mapping $z : V \to \mathbb{R}^d$ where d is the dimensionality of the representation space.

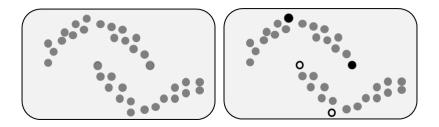
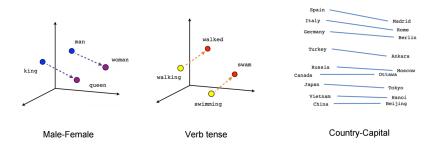


Figure 1: Representation learning happens by doing unsupervised or semi-supervised learning.

Let us take inspiration from word representation learning. Namely we take a look at Word2Vec. $^{\rm 1}$



¹(Mikolov et al., 2013)

The Peril and Promise of Machine Learning

Graph convolutional networks

The DeepWalk idea

Nodes that are close in a random walk should have similar representations in the embedding space (Perozzi et al., 2014).

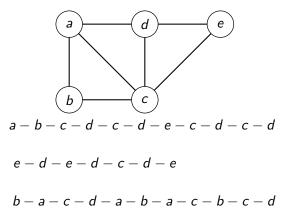


Figure 2: Example graph with linear vertex sequences.

The Peril and Promise of Machine Learning

Setting up an optimization problem

The representation vector specific to node v is z(v). The optimization problem of interest is given by:

$$\min_{z} \quad \sum_{v \in V} -\log P(N_{\mathcal{S}}(v)|z(v)). \tag{1}$$

After a number of transformations and an inner product parametrization we get the following:

$$\min_{z} \sum_{v \in V} \left[\ln \left(\sum_{u \in V} \exp(z(v) \cdot z(u)) \right) - \sum_{n_i \in N_S(v)} z(n_i) \cdot z(v) \right].$$
(2)

On complexity and application

Create an embedding takes:

 $\mathcal{O}(|V| \times \text{Dimension} \times \text{Sequence length} \times \text{Window size} \times \text{Samples per node})$

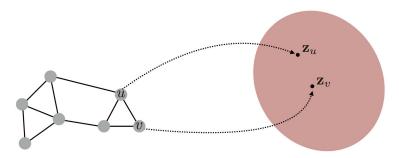


Figure 3: We first create an embedding – this is unsupervised. The features can be used for downstream learning.

The Peril and Promise of Machine Learning

Graph convolutional networks

Case Study I.: FabSwingers

ſ	abswingers.com				
	fun, free & fabulous				
HOME MY ACCOUNT	BROWSE CHAT HOTLIST FORUM MEETS, EVENTS CLUBS PICS LOGIN				
LOGIN	Free Swinging Site: Put away your credit card!				
Username or Email: Password:	Welcome to FabSwingers, a free website created for swingers by a genuine swinging couple.				
Keep logged in:	Join us for free, today				
Login	Members online now: 23318 online				
» Forgotten password	In free video cam room now: 489 chatting				
» Join now (free!)	✓ By swingers, for swinging, for free since 2006				
QUICK LINKS	✓ 200,000+ people use the site daily				
New Couples New Women	Free video chat and live cams				
 New Men Couples Online Now 	Verification system to find genuine people				
* Chatting Now	Local search and updates				
COUNTRIES	Genuine swingers welcome: Join today.				
Choose a country first; then select your state or county to find local swingers.	Already registered? Login here				
= Australia = Canada = Ireland = New Zealand = UK = USA	Fal3Swipgers is only for adults aged 18 or older (or 21 years or older where 18 is not the age of majority). Read about how we <u>notect under 18 s</u>				

Graph convolutional networks

Summary References

Performance under sparsity

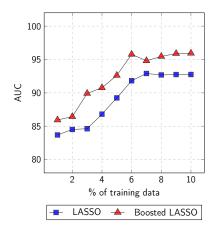
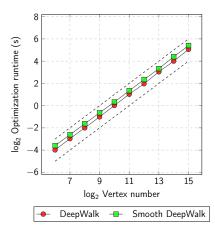


Figure 4: Classification performance on the safe sex preference task measured by area under the ROC curve. Each point was calculated from 10 random train-test splits.

 Motivation and introduction
 Graph embeddings
 Graph convolutional networks
 Summary

 000000
 000000000
 00000000
 0

Scalability



References

Figure 5: Sensitivity of optimization and random walk sampling runtime to graph size measured by seconds. Training on 2¹⁵ nodes takes 40 seconds.

Motivation and introduction

Graph embeddings

Graph convolutional networks

Noise tolerance

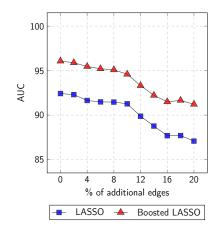


Figure 6: Sensitivity of the classification performance to the presence of noisy relationships on the safe sex task. Each point was calculated from 10 graphs with random edges.

Nice properties and limitations

Nice properties:

- 1. Totally unsupervised feature extraction.
- 2. Easy to distribute (sampling and optimization).
- 3. You can use more advanced tools from neural language understanding (e.g. recurrent neural networks).

Not so nice properties:

- 1. Not transferable learning.
- 2. Handling dynamic networks is cumbersome.
- 3. Uses a lot of memory.

Graph convolutional neural models²

Each node in ${\mathcal G}$ filters the signal X with the weights W_1 and messages the neighbors:

 $\mathsf{Z}_1 = \mathit{f}_1(\mathcal{G},\mathsf{X},\mathsf{W}_1)$

This abstract signal is filtered again:

$$\mathsf{Z}_2 = f_2(\mathcal{G}, \mathsf{Z}_1, \mathsf{W}_2)$$

Finally, we aggregate once again to predict the label of nodes:

$$\widehat{\boldsymbol{\mathsf{Y}}} = \mathsf{Aggregate}(\boldsymbol{\mathsf{Z}}_2, \boldsymbol{\mathsf{W}}_3)$$

We want to minimize the cost of mislabeling nodes:

minimize
$$\mathcal{L}(\mathbf{Y}, \widehat{\mathbf{Y}})$$

²(Kipf & Welling, 2016)

The Peril and Promise of Machine Learning

Motivation and introduction	Graph embeddings	Graph convolutional networks ○●○○○○○○○	Summary ○	References
Scaling it up.				

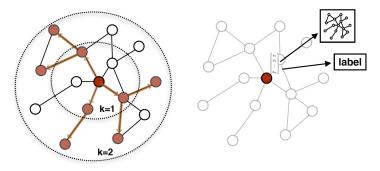
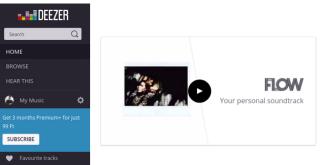


Figure 7: First, let us sample fixed-size neighborhoods from each node. Second, build a model which classifies the neighborhoods. For details see Hamilton et al. (2017).

Graph convolutional networks

Summary References

Case Study II.: Deezer leak



Browse > Explore by genre and mood

0

Predictive performance

	Croatia	Hungary	Romania
Factorization	0.128	0.072	0.051
	(±0.007)	(±0.007)	(±0.004)
DeepWalk	0.173	0.120	0.087
	(±0.006)	(±0.006)	(±0.008)
DeepWalk + Factorization	0.215	0.153	0.114
	(±0.006)	(±0.004)	(±0.003)
Planetoid	0.230	0.169	0.132
	(±0.006)	(±0.004)	(±0.006)
Cold Start GCN	0.288	0.213	0.186
	(±0.005)	(±0.004)	(±0.005)
GCN	0.328	0.244	0.213
	(±0.006)	(±0.004)	(±0.006)
Resampled GCN	0.333	0.250	0.215
	(±0.002)	(±0.002)	(±0.002)

Deezer Social Networks

Table 1: Predictive performance of graph convolutional models on the Deezer song datasets measured by Precision@100. Each experiment was repeated 10 times – standard deviations in the parentheses.

Motivation and introduction	Graph embeddings	Graph convolutional networks	Summary	References
		00000000		

Transfer learning

		Target country		
		Croatia	Hungary	Romania
	Croatia	_	0.231 (±0.004)	0.198 (±0.007)
Source	Hungary	$\underset{(\pm 0.006)}{0.317}$	_	$\underset{(\pm 0.006)}{0.196}$
	Romania	$\underset{(\pm 0.005)}{0.315}$	0.232 (±0.004)	-
	GCN	0.328 (±0.006)	0.244 (±0.004)	0.213 (±0.006)

Table 2: Transfer learning performance on the Deezer social networks measured by Precision@100. Each experiment was repeated 10 times – standard deviations in the parentheses.

Motivation and introduction

Graph embeddings

Graph convolutional networks

Summary References

The double cold start problem

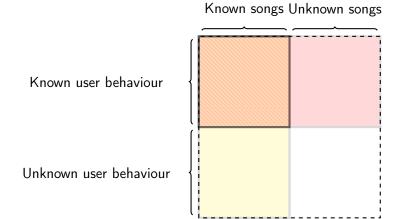


Figure 8: How can we recommend songs that nobody listened to? How can we recommend music to people who never revealed their preferences?

Graph convolutional networks

References

Mapping to song space

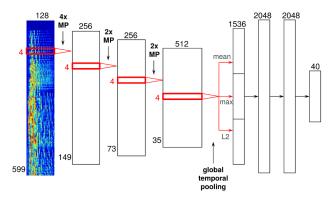


Figure 9: We can learn a mapping from spectral song representations to factors (van den Oord et al., 2013). We assume that we have the first 30 seconds of every song in advance.

Performance under double cold start

Deezer Social Networks Croatia Hungary Romania Factorization 0.128 0.072 0.051 (± 0.007) (± 0.007) (± 0.004) Double cold model 0.102 0.055 0.027 (± 0.001) (± 0.001) (± 0.001)

Table 3: Predictive performance of the factor mapping model. Each experiment was repeated 10 times – standard deviations in parentheses.

 Motivation and introduction
 Graph embeddings 000000000
 Graph convolutional networks 000000000
 Summary 0
 References 0

 Scalability

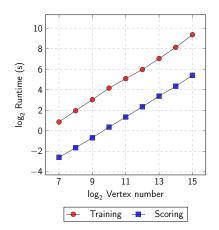


Figure 10: Sensitivity of training and scoring runtime to graph size measured by seconds. Training on 2^{15} nodes takes 10 minutes, and scoring on the same number of nodes takes approximately 1 minute.

You can learn easily from social context about users and make inference even when labels are sparse.

Specifically:

- Inferring things about You that You never made public is quite easy if I know Your friends.
- Learning on graphs is linear in the number of nodes.
- ► It even works when you have metadata on a handful of people.
- Features extracted are transferable.
- You can solve cold-start scenarios.

References I

- W. L. Hamilton, et al. (2017). 'Inductive Representation Learning on Large Graphs'. In *NIPS*.
- T. N. Kipf & M. Welling (2016). 'Semi-Supervised Classification with Graph Convolutional Networks'. *arXiv preprint arXiv:1609.02907*.
- T. Mikolov, et al. (2013). 'Distributed Representations of Words and Phrases and their Compositionality'. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc.
- B. Perozzi, et al. (2014). 'DeepWalk: Online Learning of Social Representations'. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pp. 701–710, New York, NY, USA. ACM.

Motivation and introduction	Graph embeddings	Graph convolutional networks	Summary	References

References II

A. van den Oord, et al. (2013). 'Deep content-based music recommendation'. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp. 2643–2651. Curran Associates, Inc.