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Abstract

This paper deals with econometric models where some (or all) explanatory variables
(or covariates) are observed as discretized ordered choices. Such variables are in theory
continuous, but in this form are not observed at all, their distribution is unknown, and
instead only a set of discrete (menu type) choices are observed. We explore how such
variables influence inference, more precisely, we show that this leads to a very special
form of measurement error, and consequently to endogeneity bias. We then propose ap-
propriate sub-sampling and instrumental variables (IV) estimation methods to deal with
the problem.

1 Introduction

There is an increasing number of survey-based large data sets, where many (sometimes all)
variables are observed through the window of individual menu choices, i.e., by picking one
option from a pre-set menu/class list, while the original variables themselves are in fact
continuous. For example, in transportation modelling the US Federal Transportation Office
creates surveys to measure different transportation behaviours. Such practice is also com-
mon for major cities like London, Sydney and Hong Kong. Usually the reported values are
discretized version of variables, like average personal distance travelled, or use of public or
private transportation (Santos et al., 2011). Also in transportation research, the use of Likert-
scale type data on intentions or attitudes is quite common, such as data from question on the
likelihood of utilising certain transportation mode (see Heath and Gifford (2002)). In happi-
ness economics variables are also often measured with Likert-scale data (see Frey and Stutzer
(2002) or Stutzer (2004)). Such examples are also common in many other areas, like credit
ratings in financial economics, corruption measures or institutional development in political
economy. These are such discrete variables which have the characteristics of menu choices (see
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Mauro (1995) and Méndez and Sepúlveda (2006) or Knack and Keefer (1995) and Acemoglu
et al. (2002)). Typically such variables are related to income, expenditure on something over
a period of time, willingness to take some action (e.g., how much would you be willing to
pay for....?) or questions about likelihood(s) (e.g., how likely would you to download this
application...?) and questions related to time (e.g., how much time did you spend last week
commuting...?). The main question we try to investigate in this paper is how this may affect
inference in an econometric model, when such variables are used as explanatory variables or
covariates.

Consider xit ∼ Di(0, 100) where Di(a, b) denotes a distribution with support in [a, b] with
mean µi for i = 1, . . . , N . It is also assumed that it is stationary so the distribution may
change over individual i but not over time, t. Also, quite importantly, the distribution Di(·)
is unknown (and can be continuous or discrete). Furthermore, define

x∗it =



z1 if c0 ≤ xit < c1 or xit ∈ C1 = [c0, c1) 1st menu choice

z2 if c1 ≤ xit < c2 or xit ∈ C2 = [c1, c2)
...

...

zm if cm−1 ≤ xit < cm or xit ∈ Cm = [cm−1, cm)
...

...

zM if cM−1 ≤ xit < cM or xit ∈ CM = [cM−1, cM )

last menu choice.

(1)

Variable zm, m = 1, . . . ,M can be a measure of centrality of the given menu, or can be
a completely arbitrarily assigned value (say, for example, if we consider preferences, etc.).
The threshold cm can be known, unknown or in some cases it can also be stochastic. For
simplicity we may also refer to each menu point as class. The main difficulty is that instead
of xit we only observe x∗it. Continuous variable x is in fact observed through the discrete
ordered window of x∗it.

2 Basic Setup

Let us assume that we have an econometric model of the form

yit = g(w′itγ + x∗
′
itβ) + εit (2)

with the true Data Generating Process (DGP) being:

yit = g(w′itγ + x′itβ) + uit (3)

where i = 1, . . . , N , t = 1, . . . , T , w is a set of “usual” explanatory variables, x∗ is a set of
menu choice variable as defined in (1), γ and β are unknown parameters, g(.) is a known
linear or non-linear function, and uit is an idiosyncratic disturbance term for model (3)
with εit being its perceived counterpart in model (2). We also maintain the independence of
observations across individuals assumption. The main question is therefore how estimating
model (2) differs to estimating model (3).

Remark: If Di(.) is known, the expected value of each variable in x∗ is therefore also know
in each menu/class and have an unbiased/consistent estimate, then the LS estimator of
model (2) is unbiased/consistent. This is in fact the Berkson model (see Berkson (1980) and
Wansbeek and Meijer (2000) pp. 29-30).
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2.1 An Example

Let us assume that we would like to model in a given city the factors explaining individual
Transport Expenditures (TE), over a period of time with the simple model

TEit = w′itγ + β UPTit + Fixed Effects + εit , (4)

where TEit is the transport expenditure for individual i in period t, UPTit is the use of public
transport in commuting measured in percentage points: 100% if only PT was used and 0%
if PT was not used at all, for individual i (i = 1, . . . , N) on day t (t = 1, . . . , T ), and wit are
“usual” controls. If UPT is not observed and instead we observe only the individual’s choice
from a pre-set menu menu list, UPT ∗ in the following form:

UPT ∗it =


1, if 90% ≤ UPTit = 100%

2, if 50% ≤ UPTit < 90%

3, if 10% ≤ UPTit < 50%

4, if 0% ≤ UPTit < 10%,

(5)

where the menu choices are:

1→ took almost only public transport
2→ took mostly public transport
3→ mostly did not take public transport
4→ almost did not take public transport

(6)

Or alternatively, one could assign the mid value of each menu to UPT ∗it such that

1→ took almost only public transport
0.75→ took mostly public transport
0.25→ mostly did not take public transport

0→ almost did not take public transport

(7)

and so

UPT ∗it =


1, if 90% ≤ UPTit ≤ 100%

0.75, if 50% ≤ UPTit < 90%

0.25, if 10% ≤ UPTit < 50%

0, if 0% ≤ UPTit < 10%.

(8)

2.2 Related Work

To the best of our knowledge there has been no study investigating the estimation of cate-
gorized variable(s), when the categories/classes are not represented by the expected values
of the underlying distribution(s). There has been though some work done on related issues.
Taylor and Yu (2002) consider a regression model with three multivariate normal random
variables. The first is linearly dependent on the second one. Then they dichotomize this sec-
ond one and include into the model an another variable as well and derive the asymptotic bias
for its parameter. However, they do not connect this to the bias in the parameter of the other
variable(s). Lagakos (1988), analyses the correct cut values for the grouping of continuous
explanatory variables. He derives a test on deviating from the expected group mean and the
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categorized value, if the group mean is known. He refers to this solution as the optimization
criterion for discretizing an explanatory variable, using the argument in Connor (1972).
There are many papers considering the discretization of a continuous variable, but all assume
that the class/menu choice values are properly representing each class/menu. In these papers,
the main question is the effect of discretization in terms of efficiency loss (see, for example,
Cox (1957), Cohen (1983), Johnson and Creech (1983)).
The measurement error literature has not considered the problem in details either, as it has
been assumed that the class/menu choice values are taking the expected values of the known
underlying distribution (Wansbeek and Meijer (2001)), or the measurement error is on top
of a categorized variable (Buonaccorsi (2010)).

3 Some Theory: Bias of the OLS Estimator

Let us assume for simplicity that g(·) in (2) is linear and that there is only one explanatory
variable in the model, which is observed through menu choices. This case covers the issue,
when the respondent knows the exact value of his or her characteristics, but because of the
design of data gathering, the researcher makes the respondents choose a class, which is later
assigned to some class value. It is also assumed, as said earlier, that it has a known support
[a, b] with known boundaries, and let zm from equation (1) be the class/menu midpoint.1

Taking specifically the classes and the class midpoints do not alter the results of the paper,
we use them for illustration purposes.
Our classes/menus are the following with their respective class values:

C1 =

[
a, a+

b− a
M

)
z1 = a+

b− a
2M

...

Cm =

[
a+ (m− 1)

(b− a)

M
,a+m

b− a
M

)
zm = a+ (2m− 1)

b− a
2M

... (9)

CM =

[
a+ (M − 1)

(b− a)

M
,a+M

b− a
M

]
zM = a+ (2M − 1)

b− a
2M

.

Let Nm be the number of observations in each class Cm, that is Nm =
∑N

i=1 1{xi∈Cm}, where
1{x∈C} denotes the indicator function defined as

1{x∈C} :=

{
1, if x ∈ C
0, if x 6∈ C.

When x has a distribution pdf f(·) and cdf F (·),

E(Nm) = E

(
N∑
i=1

1{xi∈Cm}

)

= N

∫
Cm

f(x) dx

= N Pr(cm−1 < x ≤ cm),

1In the special case of the uniform distribution, the midpoints coincide with the conditional expectation of
the uniformly distributed explanatory variable x in that class.
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using the independence assumption. When, for example, x has a uniform distribution we have
E(Nm) = N/M for all m = 1, . . . ,M .

The standard OLS estimation is given by

β̂∗OLS = (x∗
′
x∗)
−1

(x∗
′
y)

=
z1

(∑N1
i=1 yi

)
+ z2

(∑N1+N2
i=N1+1 yi

)
+ · · ·+ zM

(∑NM
i=N−NM+1 yi

)
N1z2

1 +N2z2
2 + · · ·+NMz2

M

=
z1

(∑N1
i=1 βxi + ui

)
+ · · ·+ zM

(∑NM
i=N−NM+1 βxi + ui

)
N1z2

1 + · · ·+NMz2
M

=
z1

[∑N
i=1 1{xi∈C1}(βxi + ui)

]
+ · · ·+ zM

[∑N
i=1 1{xi∈CM}(βxi + ui)

]
N1z2

1 + · · ·+NMz2
1

=

∑M
m=1 zm

[∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑M

m=1Nmz2
m

(10)

=

∑M
m=1

[
a+ (2m− 1) b−a2M

] [∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑M

m=1Nm

[
a+ (2m− 1) b−a2M

]2 .

Using equation (10), we can get the following general formula for the expected value of the
OLS estimator

E
(
β̂∗OLS

)
= E


∑M

m=1 zm

[∑N
i=1 1{xi∈Cm} (β(x∗i + ξi) + ui)

]
∑M

m=1Nmz2
m


= E


∑M

m=1 zm

[
β
(∑N

i=1 1{xi∈Cm}x
∗
i +

∑N
i=1 1{xi∈Cm}ξi

)
+
∑N

i=1 1{xi∈Cm}ui

]
∑M

m=1Nmz2
m


= βE

{∑M
m=1 zm

∑N
i=1 1{xi∈Cm}x

∗
i∑M

m=1Nmz2
m

}
+ βE

{∑M
m=1 zm

∑N
i=1 1{xi∈Cm}ξi∑M

m=1Nmz2
m

}

+ E

{∑M
m=1 zm

∑N
i=1 1{xi∈Cm}ui∑M

m=1Nmz2
m

}

= β + βE

{∑M
m=1 zm

∑N
i=1 1{xi∈Cm}ξi∑M

m=1Nmz2
m

}

= β + βE

{∑M
m=1 zmNmξm∑M
m=1Nmz2

m

}
, (11)

where the researcher makes the respondents cause an error ξi for each observation by setting
the possible answer values at x∗i , xi = x∗i + ξi. The last but one assertion in equation (11) is
based on the disturbance term ui being independent of the intended regressor xi and E(ui) = 0
for all i = 1, . . . , N . The last inference uses that the errors ξi have the same conditional dis-

tribution over the class Cm, ξm
d
= ξi|Cm for all m = 1, . . . ,M and i = 1, . . . , N . Importantly,

the second term in the expression (11) does not vanish in general, since ξm|Cm is not inde-
pendent of Nm|Cm, ξm|Cm 6⊥⊥ Nm|Cm (see figure (1), right panel) nor E(ξi|Cm) = E(ξm) = 0
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Uniform distribution

Cm

Nm ξm

General distribution

xi, Cm

Nm ξm

Figure 1: The dependence of the number of observations Nm and the error ξm on the dis-
tribution of the regressor variable xi and the class Cm in uniform (left panel) and general
distribution (right panel) cases

C1 C2

z1 z2

E(x|C1) E(x|C2)

E(ξ1) = 0 E(ξ2) = 0

xi

C1 C2

z1 z2

E(x|C1) E(x|C2)

E(ξ1) 6= 0 E(ξ2) 6= 0

xi

Figure 2: The difference between uniform (left panel) and general distributions (right panel)

(see figure (2), right panel). These are the sufficient assumptions for the OLS to be unbiased
estimator. The former issue can be eliminated by conditioning on the underlying distribution
of xi. Conditional on the distribution xi and the class Cm, the number of observations in the
class and the error are independent of each other, Nm|xi, Cm ⊥⊥ ξm|xi, Cm, but knowing the
underlying distribution makes the problem trivial. Nonetheless, because of both issues, the
naive OLS estimator is biased.

However, the uniform distribution turns out to be a special case. Let us assume that xi ∼
U(a, b) for all i = 1, . . . , N , both the issues disappear (see the left panels on figure (1) and
figure (2)). The former issue is resolved, because in case of the uniform distribution, both the
number of observations Nm in each class Cm and the error term ξm are independent of the
regressor’s xi distribution, while the latter issue does not appear trivially, since in this case,
the class midpoints are proper estimates of the regressor’s xi expected value on the class Cm.
From equation (11) we obtain that

E
(
β̂∗OLS

)
= β + βE

{∑M
m=1 zmNmξm∑M
m=1Nmz2

m

}
= β,

where ξm is a uniformly distributed random variable with zero expected value, E(ξm) = 0 for
all m = 1, . . . ,M . Hence, in the case of uniform distribution, unlike for other distributions,
the OLS is unbiased.

Now turning back to equation (10), but instead to taking the expectation let us see what
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happens in the probability limit, when the sample size or the number of classes go to infinity.

Assume that plimN→∞
∑N

i=1 1{xi∈Cm}ui = 0, in other words that menu/class selection is
independent of the disturbance terms and also that with sample size N the number of
menus/classes M is fixed.

plim
N→∞

β̂∗OLS = plim
N→∞

∑M
m=1 zm

[∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑M

m=1Nmz2
m

=

∑M
m=1 zm

[
plimN→∞

∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑M

m=1 z
2
m plimN→∞Nm

=

∑M
m=1 zm

[
plimN→∞ β

∑N
i=1 1{xi∈Cm}xi

]
∑M

m=1 z
2
m plimN→∞Nm

=
β
∑M

m=1 zm

[
plimN→∞

∑N
i=1 1{xi∈Cm}xi

]
∑M

m=1 z
2
m plimN→∞Nm

, (12)

where xm sums the truncated version of the original random variables xi on the class Cm,

xm
d
= xi|Cm, for all m = 1, . . . ,M , xm =

∑N
i=1 1{xi∈Cm}xi, therefore its asymptotic distribu-

tion can be calculated by applying the Lindeberg-Levy Central Limit Theorem,

xm/Nm
a∼ N

(
E(xm),Var(xm)/Nm

)
.

β̂∗OLS is consistent if and only if the probability limit in equation (12) equals β. To give a
condition for consistency, first we rewrite the previous equation (12) in terms of the error
terms ξi,

plim
N→∞

β̂∗OLS − β =
β
(∑M

m=1 zm

[
plimN→∞

∑N
i=1 1{xi∈Cm}xi

]
−
∑M

m=1 z
2
m plimN→∞Nm

)
∑M

m=1 z
2
m plimN→∞Nm

=
β
∑M

m=1 zm

[
plimN→∞

∑N
i=1 1{xi∈Cm}(xi − x∗i )

]
∑M

m=1 z
2
m plimN→∞Nm

=
β
∑M

m=1 zm

[
plimN→∞

∑N
i=1 1{xi∈Cm}ξi

]
∑M

m=1 z
2
m plimN→∞Nm

, (13)

where the asymptotic distribution of the sum of errors in class Cm, ξm =
∑N

i=1 1{xi∈Cm}ξi,
m = 1, . . . ,M , can be given by

ξm/Nm
d
= xm/Nm − zm

a∼ N
(
E(xm)− zm,Var(xm)/Nm

)
.
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After substituting back to the expression (13), we get

plim
N→∞

β̂∗OLS − β =
plimN→∞ β

∑M
m=1 zmξ

m

plimN→∞
∑M

m=1 z
2
mNm

=
plimN→∞O(N)β

∑M
m=1 zmξ

m/Nm

plimN→∞O(N)
∑M

m=1 z
2
m

=
β
∑M

m=1 zm plimN→∞ ξ
m/Nm∑M

m=1 z
2
m

=
β
∑M

m=1 zm {E(xm)− zm}∑M
m=1 z

2
m

, (14)

where the last step in the above derivation can simply be obtained from the definition of the
plim operator, i.e., for any ε > 0 given

plim
N→∞

ξm = E(Xm)− zm

⇐⇒ lim
N→∞

Pr (|ξm − {E(Xm)− zm}| > ε)

= lim
N→∞

Fξm (−ε+ E(Xm)− zm) [1− Fξm (ε+ E(Xm)− zm)] = 0.

The convergence holds, because for any given δ > 0 there is a threshold N0 for which the term
in the limit becomes less than δ. This can be seen from Fξm(·) being close to a degenerate
distribution above a threshold number of observations N0, or intuitively, since the variance
of the sequence of random variables ξm collapses in N , its probability limit equals to its
expected value. Therefore, to obtain the (in)consistency of the OLS estimator β̂∗OLS in the
number of observations N , we only need to calculate the expected value of the truncated
random variable xm, m = 1, . . . ,M and check whether the expression (14) equals 0 to satisfy
a sufficient condition.

Let us apply these results to the uniform distribution. In this case there is no consistency
issue because the class midpoints coincide with the expected value of the truncated uniform
random variable in each class making the expression (14) zero, hence the OLS estimator is
consistent.

Notice that, the consistency of the OLS estimator is not guaranteed even in case of symmetric
distributions and symmetric class boundaries. After appropriate transformations (e.g., de-
meaning), it can be see that the sign of the differences between the expectation of the trun-
cated random variables xm and the class midpoints is opposite to the sign of the class mid-
points on either side of the distribution, which implies negative overall asymptotic bias in N
(see figure 3).

In the case of a (truncated) normal variable, for example, we need to substitute the expected
value of the truncated normal random variable xm for each m = 1, . . . ,M in the consistency
formula (14). As a result, the differences between the expectation and the class midpoints in
general are not zero for all m, hence the formula cannot be made arbitrarily small. Therefore,
the OLS estimator becomes inconsistent in N (see the simulation results in the Appendix).

Let us see next the case when N is fixed but M → ∞. Now we may have some classes that
do not contain any observations, while others still do. Omitting, however, empty classes does
not cause any bias because of our iid assumption. Furthermore, while we increase the number
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C1 C2

z1 < 0 z2 > 0

E(x|C1) E(x|C2)

E(ξ1) > 0 E(ξ2) < 0

xi

Figure 3: The estimator is inconsistent even in case of symmetric distributions, see equation
(14)

of classes, the size of the classes itself are likely to shrink and become so narrow that only one
observation can fall into each of the classes. In the limit we are going to hit the observations
with the class midpoints (boundaries). To see that, we derive the consistency formula in the
number of classes M assuming that plimM→∞

∑
{m:Cm 6=∅,m=1,...,M} zmuim = 0, or with re-

indexation plimM→∞
∑N

i=1 zmiui =
∑N

i=1 xiui = 0, which should hold in the sample and is a

stronger assumption than the usual plimN→∞
∑N

i=1 xiui = 0.

plim
M→∞

β̂∗OLS − β = plim
M→∞

∑M
m=1 zm

[∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑M

m=1Nmz2
m

− β

= plim
M→∞

∑
{m:Cm 6=∅,m=1,...,M} zm

[∑N
i=1 1{xi∈Cm}(βxi + ui)

]
∑
{m:Cm 6=∅,m=1,...,M}Nmz2

m

− β

= plim
M→∞

∑
{m:Cm 6=∅,m=1,...,M} zm(βxim + uim)∑

{m:Cm 6=∅,m=1,...,M} z
2
m

− β

= plim
M→∞

β

{∑
{m:Cm 6=∅,m=1,...,M} zmxim∑
{m:Cm 6=∅,m=1,...,M} z

2
m

− 1

}

= plim
M→∞

β

{∑N
i=1 zmixi∑N
i=1 z

2
mi

− 1

}

= β

{∑N
i=1 plimM→∞ zmixi∑N
i=1 plimM→∞ z

2
mi

− 1

}

= β

{∑N
i=1 xixi∑N
i=1 xi

2
− 1

}
= 0,

where the index im ∈ {1, . . . , N} denotes observation i in class m (at the beginning there
might be several observation i that belong to the same class m), but index mi ∈ {1, . . . ,M}
denotes the class m that contains observation i (at the and of the derivation one class m
includes only one observation i). Notice that the derivation do not depend on the distribution
of the explanatory variable x, so consistency in the number of classes M holds in general.
Let us also note, however, that this convergence in M is slow.
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Remark: The above results hold for much simpler cases as well. If instead of model (2) we
just take the simple sample average of x, x̄ =

∑
i x/N (when t = 1), then x̄∗ =

∑
i x
∗
i /N is

going to be a biased and inconsistent estimator of x̄.

The measurement error due to menu choice variables, however, not only induces correlation
between the error terms and the observed variables, but it also induces a non-zero expected
value for the disturbance terms of the regression in (2).
Consider a simple example where there is an unobserved variable xi with an observed menu
choice version:

x∗i =

{
z1 if c0 ≤ xi < c1

z2 if c1 ≤ xi < c2

(15)

and
yi = xiβ + εi. (16)

Using the menu choice variable means:

yi = x∗iβ + (xi − x∗i )β + εi (17)

and E [xi − x∗i ] is

E [xi − x∗i ] =E(xi)− E(x∗i )

=E(xi)− E [z11(c0 ≤ xi < c1) + z21(c1 ≤ xi < c2)]

=E(xi)− z1 Pr(c0 ≤ xi < c1)− z2 Pr(c1 ≤ xi < c2).

The last line above is not zero in general. Thus, it would induce a bias in the estimator if the
regression does not include an intercept. This result generalizes naturally to variable with
multiple menu choice values.
These results about the behaviour of the OLS estimator are summarized in the following
table:

x ∼ truncated Biasedness
Consistency in
N

Consistency in
M

U(a, b) 3 3 3

N(µ, σ2) 7 7 3

Exp(λ) 7 7 3

Weibull(λ, k) 7 7 3

Table 1: Biasedness and consistency of the OLS estimator β̂∗OLS
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4 Estimation Reconsidered

Let us generalise the problem and re-write it in matrix form. Consider the following linear
regression model:

y = Xβββ + Wγγγ + εεε , (18)

where X and W are N ×K and N ×K1 data matrices of the explanatory variables, respec-
tively. y is a N × 1 vector containing the data of the dependent variable and εεε is a N × 1
vector of disturbance terms. βββ and γγγ are K × 1 and K1 × 1 parameter vectors, respectively.
X is not observed, only its menu choice version, X∗ is observed. Define the MK ×K matrix

Z =


z1 0 . . . . . .
0 z2 0 0
... . . .

. . .
...

. . . . . . 0 zK

 ,
where zi = (zi1, . . . , ziM )′ containing the menu choice values for variable i. Let E = {eki}
where k = 1, . . .K and i = 1, . . . , N such that

eki =


1(ck0 ≤ xki < ck1)
1(ck1 ≤ xki < ck2)

...
1(ckM−1 ≤ xki < ckM )

 ,
where xki denotes the value of the ith observation from the explanatory variable xk.
This implies E is a MK × N matrix since each entry eki is a M × 1 vector. Following the
definition of x∗i in the paper, we can rewrite X∗ = E′Z.

4.1 The OLS Estimator

Following from equation (18), consider the regression based on the observed data:

y = X∗βββ + Wγγγ + (X−X∗)βββ + εεε

then the OLS estimator for βββ is

β̂ββ =
(
X∗′MWX∗

)−1
X∗′MWy ,

where MW = I −W(W′W)−1W′ defines the usual residual maker. The usual derivation
shows

β̂ββ =
(
Z′EMWE′Z

)−1
Z′EMWXβββ +

(
Z′EMWE′Z

)−1
Z′EMWεεε. (19)

This implies OLS is unbiased if and only if (Z′EMWE′Z)−1 Z′EMWX = I. This allows us
to address the following:

1. Investigate the bias analytically by examining the elements in Z′EMWE′Z and Z′EMWX.

2. Derive the conditions for IV by constructing an orthogonal matrix to X−E′Z.
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4.2 Bias of the OLS

To simplify the analysis, we assume for the time being the following:

MWX =X (20)

MWX∗ =X∗. (21)

In other words, we assume independence between W and X as well as its menu choice version.
This may appear to be a strong assumption but it does allow us to see what is going on a
little better. We can relax this at a latter stage.
The OLS estimator in this case becomes:

β̂ββ =
(
Z′EE′Z

)−1
Z′EXβββ +

(
Z′EE′Z

)−1
Z′Eεεε.

The OLS is unbiased if (Z′EE′Z)−1 Z′EX = I. Let’s consider a typical element in Z′EE′Z
first. Since Z is non-stochastic as it contains only all the pre-defined menu choice values, it
is sufficient to examine EE′.

EE′ =


e11 . . . e1i . . . e1N
... . . .

... . . .
...

ek1 . . . eki . . . ekN
... . . .

... . . .
...

eK1 . . . eKi . . . eKN




e′11 . . . e′k1 . . . e′K1
... . . .

... . . .
...

e′1i . . . eki′ . . . e′ki
... . . .

... . . .
...

e′1N . . . e′kN . . . e′KN


Note that each entry in E is a vector, so EE′ will result in a partition matrix which elements
are the sums of the outer products of eki and elj for k, l = 1, . . . ,K and i, j = 1, . . . , N .
Specifically, let bkl be a typical block element in EE′ then

bkl =
N∑
i=1

ekie
′
li.

Let 1kim = 1 (ckm−1 ≤ xki < ckm) then the (m,n) element in bkl, bmn is

N∑
i=1

1kim1lin for m,n =

1, . . . ,M . Thus, E (EE′) exists if E
(
1kim1lin

)
exists.

E
(
1kim1lin

)
=

∫
Ω

f(xk, xl)dxkdxl , (22)

where f(xk, xl) denotes the joint distribution of xk and xl and Ω = [ckm−1, ckm]× [cln−1, cln]
defines the region for integration. Thus, N−1bmn should converge into equation (22) under
the usual WLLN.
Following similar method, let akl be the (k, l) element in Z′EX then

akl =
N∑
i=1

M∑
m=1

zkm1kimxli.

12



Now,

E

[
M∑
m=1

zkm1kimxli

]
=

M∑
m=1

zkmE
[
1kimxli

]
=

M∑
m=1

zkm

∫
Ω1

xlf(xk, xl)dxkdxl ,

(23)

where Ω1 = [ckm−1, ckm]×ΩX with ΩX denotes the sample space of xk and xl. Thus, N−1akl
should converge into equation (23) under the usual WLLN.
In the case when equations (20) and (21) do not hold, the analysis becomes more tedious
algebraically but it does not affect the result that OLS is biased. Recall equation (19), and
let ωij be the (i, j) element in MW for i = 1, . . . , N and j = 1, . . . ,K1, then following the
same argument as above EMWE′ can be expressed as a M ×M block partition matrix with
each entry a K ×K matrix. The typical (m,n) element in the (k, l) block is

gkl =

N∑
j=1

N∑
i=1

ωij1
ki
m1lin (24)

with its expected value being

N∑
i=1

N∑
j=1

∫
Ω
ωijf (xk, xl,w) dxkdxkdw (25)

where w = (w1, . . . , wK1), dw =

K1∏
i=1

dwi and Ω = [ckm−1, ckm] × [cln−1, cln] × Ωw where

Ωw denotes the sample space of w. Note that ωij is a nonlinear function of w and so
the condition of existence for equation (25) is complicated. However, under the assump-
tion that the integral in equation (25) exits, then N−1gkl should converge to equation (25)
under the usual WLLN. It is also worth noting that E [MWX] = E [MW]E [X] = E [X] and
E [MWX∗] = E [MW]E [X∗] = E [X∗] under the assumption of independence, which reduces
equation (25) to equation (22).
Again, following the same derivation as above, a typical element in Z′EMWX is

hkl =

M∑
m=1

N∑
i=1

zkm1kimuli (26)

where uli =

N∑
τ=1

ωiτXlτ . Note that uli is the ith residual of the regression of Xl on W. The

expected value of hkl can be expressed as

M∑
m=1

zkm

∫
Ωm

ulf(xk, xl,w)dxkdxldw (27)

where ul denotes the random variable corresponding to the ith column of MWX and Ωm =
[ckm−1, ckm] × ΩX × Ωw with Ωw denotes the sample space of W. Note that ul = xl under
the assumption of independence, which reduces equation (27) to equation (23).

13



4.3 Extension to Panel Data

So far we have assumed that t = 1, that we are dealing with cross-sectional data. Next, let
us see what changes if t > 1, i.e., when we have panel data at hand. Now the most important
problem is identification. If the menu choice of an individual does not changes over the time
periods covered, the individual effects in the panel and the parameter associated with the
menu choice variable cannot be identified separately. The Within transformation would wipe
it out the menu choice variable as well. When the menu choice does change overt time, but
little, then we are facing weak identification, i.e., in fact very little information is available for
identification, so the parameter estimates are going to be highly unreliable. This is a likely
scenario when M is small, for example M = 3 or M = 5.
The solution is to have different menu choice classes (boundaries), for the different time
periods as, for example, explained in the next section. After the appropriate Within trans-
formation, the OLS can be applied with properties outlined in the previous sections and in
the next.
The bias of the panel data Within estimator can be shown easily. Let us re-write equation
(4.1) in a panel data context

y = DNααα+ X∗βββ + [(X−X∗)βββ + εεε] ,

from which the Within estimator is

β̂ββ
∗
W = (X∗′MDN

X∗)−1X∗′MDN
y ,

or equivalently

β̂ββ
∗
W = (Z′EMDN

E′Z)−1Z′EMDN
Xβββ + (Z′EMDN

E′Z)−1Z′EMDN
εεε .

where
MDN

y = MDN
X∗βββ + MDN

[(X−X∗)βββ + εεε].

The Within estimator is biased as E(β̂ββ
∗
W ) 6= β, because MDN

E′Z = MDN
X∗ 6= MDN

X.

5 Consistent Estimation: Sub-sampling and Instrumental Vari-
ables

In this section, we propose two possible approaches to ensure consistent estimation, which
later is extended to instrumental variables techniques as well. Most importantly, we depart
from the classical econometric approach to estimation: we do not start assuming that the
sample is given, but the main aim is to design an environment and sampling that delivers
estimation with good enough precision. In other words we investigate what is the best method
to gather the data, (what is the best survey design) to reduce the estimation bias presented
earlier.
The main approach of the proposed methods is to create a number of sub-samples (B)
using the same number (M) of menu choice classes in each sub-sample, but where the class
boundaries are different. In fact, this approach utilizes the M consistency result previously
discussed in section ?? and transforms it into N consistency, through using several sub-
samples. The intuition behind the methods is that this leads to a better mapping of the
unknown distribution of x and so reduce the estimation bias. By merging the different sub-
samples into one data set (let us call this the working sample), we get MWS overall number

14



of menu choice classes (or bins) across the merged sub-samples, where MWS is much larger
than M . In a given sub-sample each respondent (individual i) is given one questionnaire (in
the case of cross sectional data). The set of respondents who fill the questionnaire with the
same class boundaries define a sub-sample. Each sub-sample has NSS,j , j = 1, . . . , B number
of observations (

∑
j NSS,j = N). In this setup a sub-sample looks exactly as the problem

introduced above in the paper, and the only difference across sub-sample is that the menu
choice (class) boundaries vary. Note that the number of observations across sub-samples can
be the same or, more likely, different. Let us see a very simple illustrative example about this.
Assume that M = 2, B = 2 as well, N = 60, NSS,1 = 30 and similarly NSS,2 = 30. Let x be a
continuously distributed variable in the [0, 4] domain and let the class boundaries in the first
sub-sample be [0, 2) and [2, 4], while in the second sub-sample [0, 1) and [1, 4], with 10, 20, 5,
and 25 observations respectively in each class. Next, let us merge the information obtained
in the two sub-samples in one working sample. This will have 3 classes (or bins): [0, 1), [1, 2)
and [2, 4]. From the 2nd sub-sample we know that with 30 observations 5 are in the 1st bin.
Similarly we can deduce that in the 2nd bin there are 5 observations as well, while in the
last 3rd bin 20 (see the picture below). Clearly the working sample maps (slightly) better the
unknown distribution of x than any of the two sub-samples.

0 2 4

zSS,11 = 1 zSS,12 = 3

NSS,1 = 30

0 1 4

zSS,21 = 0.5 zSS,22 = 2.5

NSS,2 = 30

0 1 2 4

zWS
1 = 0.5 zWS

2 = 1.5 zWS
3 = 3

NWS = 60

Construction of the working sample can be done in many different ways. We propose that
the class boundaries in the working sample is the union of the sub-samples’ class boundaries:

B⋃
i=0

cWS
i =

B⋃
j=1

M⋃
i=0

cSS,ji

This will result that in our example cWS
0 = cSS,10 , cWS

1 = cSS,21 , cWS
2 = cSS,11 , cWS

3 = cSS,12 . The
probability of an observation is in a sub-sample between given boundary points is,

Pr
(
cSS,jm−1 < x ≤ cSS,jm

)
= Pr(x ∈ j)

∫ cSS,jm

cSS,jm−1

f(x)dx

The probability of an observation in the working sample between given boundary points,
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given the observed menu choice value in a given sub-sample is observed is:2

Pr
(
cWS
m−1 < x ≤ cWS

m | cSS,jl−1 < x ≤ cSS,jl

)
=


cWS
m −cWS

m−1

cSS,jl −cSS,jl−1

, if cWS
m ≤ cSS,jl and cWS

m−1 ≥ c
SS,j
l−1

0, otherwise

General case:

Pr
(
cWS
m−1 < x ≤ cWS

m | cSS,jl−1 < x ≤ cSS,jl

)
=



cWS
m −cSSl−1

cSS,jl −cSS,jl−1

, if??

cWS
m −cWS

m−1

cSS,jl −cSS,jl−1

, if cWS
m ≤ cSS,jl and cWS

m−1 ≥ c
SS,j
l−1

cSSm −cWS
m−1

cSS,jl −cSS,jl−1

, if??

0, otherwise

From these we can easily get the uncondtional probability of an observation in the working
sample between given boundary points:

Pr
(
cWS
m−1 < x ≤ cWS

m

)
=


∑B

j=1 Pr(x ∈ j)
∑M

m=1
cWS
m −cWS

m−1

cSS,jl −cSS,jl−1

∫ cSS,jm

cSS,jm−1

f(x)dx,

if cWS
m ≤ cSS,jl and cWS

m−1 ≥ c
SS,j
l−1

0, otherwise

cSS,10 cSS,11 cSS,12

zSS,11 zSS,12

cSS,20 cSS,21 cSS,22

zSS,21 zSS,22

cWS
0 cWS

1 cWS
2 cWS

3

zWS
1 zWS

2 zWS
3

5.1 Magnifying Method

In case of the magnifying method, the researcher magnifies the domain of the answers within
the original domain of the unknown distribution of x by one equally sized bin. The size of
the bins are depending on the number of sub-surveys (R) used. As the number of sub-surveys
increases the bin’s size decrease, which will the main cause of exploring the underlying dis-
tribution. This method allows to magnify the domain of the underlying distribution without
creating a survey where the number of discretized ordered choices overflow the survey. 4.

2This is not true for the general case when the working sample’s boundary points can be anything.

16



figure shows the main idea of the magnifying method: the first line shows the union of sub-
surveys, while below that one can see the individual sub-surveys.

1 2 3 4 5 6 7 8 9 10

a b

1

1

1

2

2

2

3

3

3

4

4

4

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

	 	 	

	 	

	

DOC with B bins

Additional subsamples

M − 3

Normal subsamples

R

Additional subsamples

M − 3

⊗: Retained observations in each subsample

	: Dropped observations in each subsample

3

4

5

6

4

5

6

7

5

6

7

8

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

	 	

	 	

	 	

	 	

	
7

7

7

8

8

8

9

9

9

10

10

10

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

	 	

	 	 	

Figure 4: Magnifying method for create B descrete ordered choice values with multiple sub-
samples

The number of magnified bins B in the US has a direct link to the number of survey types
R, by design. One can easily see that, in this case, the number of overall magnified bins B
the researcher uses in her study is given by

B = M − 1 +R,

intuitively, as M classes have M − 1 common boundaries, they are magnified R times. We
suggest that the number of choices falling into the same bin is the same across sub-samples
(namely M − 2). Therefore, in each sub-sample, some observations have to be dropped. The
number of sub-samples S can also be easily given by

S = R+ 2(M − 3),
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intuitively, the initial R surveys should be augmented by M − 3 additional surveys on either
side in order to have M − 2 classes of subsamples fall into the same bin.

First let us describe a sub-survey r, where r = 1, . . . , R. The discrete ordered choices given
in a specific survey is zr1 , . . . , zrM , where class boundaries are given by cr0 , . . . , crM . With
magnifying method the sub-survey’s binwidth is given by:

cri − cri−1 =
b− a
B

By design, the effective DOC’s, which are retained during the modeling:

zeffr =


zr1 , . . . , zrM−2 , if r ≤M − 3

zr2 , . . . , zrM−1 , if M − 3 < r < R+M − 3

zr3 , . . . , zrM , if r ≥ R+M − 3

and let call effective boundary points ceffr , the boundary points where the effective DOC’s
are observed, such as:

ceffr =


cr0 , . . . , crM−2 , if r ≤M − 3

cr1 , . . . , crM−1 , if M − 3 < r < R+M − 3

cr2 , . . . , crM , if r ≥ R+M − 3

As a second step we characterize the union of the sub-surveys and then show the links between
individual and overall surveys. We have for US: zUS1 , . . . , zUSB DOC’s, where cUS0 , . . . , cUSB are
the boundaries.
Third step: number of effective observations (N eff

j ). As we have S subsamples and we dis-
tribute the number of observations equally among all surveys we have ns = N/S number of
observations for each surveys. For each sub-samples the expected number of effective obser-
vations neffs will depend on the actual underlying distribution, in the following way:
For each sub-survey the expected number of effective observations in a given bin:

E(neffrj ) = E

(
ns∑
i=1

1
xi∈ceffrj

)

= ns

∫
ceffrj

f(x) dx

= ns Pr(ceffrj−1
< x ≤ ceffrj )

= ns Pr(crj−1 , crj ∈ ceffr ) Pr(crj−1 < x ≤ crj )

= ns
M − 2

B
Pr(cUSj−1 < x ≤ cUSj )

For the sub-survey it is the sum of the effective bins:

E(neffr ) = E

M−2∑
j=1

neffrj
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For the union of sub-surveys, it is the sum of individual sub-surveys, given the observations
in each sub-samples are uniformly distributed:

E(N eff
j ) = E

 R∑
r=1

M−2∑
j=1

neffrj


=
N(M − 2)(M − 3)

SB
Pr(cUSj−1 < x ≤ cUSj )

—— OLD PART NOT READY!!!! ——-
If the underlying distribution is censored we can retain or drop the boundary observations.
This method can recover the underlying distribution as S →∞, without M →∞. However
there are some issues with procedure to note:

• We may drop a large number of the observations: the surveys are censored in that sense
they got menu choice values which has open thresholds, thus we need to drop those
observations. Also we must drop some of the observations in the boundaries in order to
preserve uniform frequencies along classes. This means in a simulation where we have
S = 100, we may only retain 2− 3% of the original sample. This is not a big problem,
when we are working with large dataset (eg., 100k or 500k), but causes problems with
small number of observations.

• Formally, need N to increase faster than S in order to get observations in each survey:
for each survey we have N/S observations, thus we need S/N → 0 to have enough
observation. (E.g.,: when we have N = 10, 000, S = 50, N/S = 200)

• Observed menu choices also depend on the class width and the survey’s observation:

S →∞, thus h = c
(S)
i −c

(S)
i−1 → 0. As in the nonparametric literature, we needN/S →∞

as h→ 0 at a faster rate. This can cause some problems if we do not have large samples,
e.g., in simulation with N = 1000, S = 50 we only observe 19 menu choice values, while

for S = 100, this is only 9. (P
[
cζkj ≤ xit < cζkj+1

]
can be quite low, especially in the

tails.)

Creating artificial observations:
While the number of dropped observation increases dramatically as we increase S, it may be a
good option to fill/replace somehow the dropped values. One solution is to replace them with
the expected value of the constructed distribution. In order to do this we need the expectation
of the truncated distribution for each survey’s dropped value, where the truncation depends
on the menu choice value we dropped. E.g.,: if we are in the left boundary then we drop

the (censored) largest menu choice value. We replace this menu choice value x
∗,(ζi)
it (c

(ζi)
M−1 <

xit) with the constructed distribution’s conditional expectation: E
[
x
∗,(S)
it |c(ζi)

M−1 < x
∗,(S)
it

]
. The

drawback of this method is E
[
x
∗,(S)
it |c(ζi)

M−1 < x
∗,(S)
it

]
6= E

[
xit|c(ζi)

M−1 < xit

]
, thus we “pass on”

the bias we make with S menu choice values to the replaced values. In practice we only
recommend this method, if the assumed bias is expected to be small.

5.2 Shifting Method

The second method is to fix the class widths and push the thresholds along the support
for different surveys. To do this one can define the effective number of surveys (EM), and
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the menu choice values in each surveys (M). Then one can define a benchmark sequence

of menu choice values z
(bm)
1 , z

(bm)
2 , . . . , z

(bm)
M , and the thresholds c

(bm)
0 , c

(bm)
1 , . . . , z

(bm)
M . The

class width is fixed at h = c
(bm)
i+1 − c

(bm)
i . Let us define the push measure such: ν = h

EM .
Using this we can push the thresholds EM times, so the ζi survey will have one extra

threshold such: c
(bm)
0 , c

(bm)
1 + iν, . . . , c

(bm)
M−1 + iν, z

(bm)
M : so it has the benchmark’s boundary

thresholds and push them in-between. It results in an extra menu choice value, the menu
choices between the boundaries are pushed, and in the boundaries they are changing in a

specific way: z
(ζi)
0 , z

(bm)
1 + iν, z

(bm)
2 + iν, . . . , z

(bm)
M−1 + iν, z

(ζi)
M . Thus for a specific survey we will

have M + 1 questions, not M .
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Figure 5: Shifting method

In the simplest case, we create similar amount of surveys. The big advantage is that one
does not drop a large amount of observations. (The exact number depends on the underlying

distribution.) The cost is that we will observe menu choice values only between z
(bm)
1 and

z
(bm)
M , which is independent of EM . This leads to artificially truncated data, and the observed

menu choices are only increases between the boundary menu choices as EM increases.3

3An other possibility is to use different amount of subsamples for each surveys. Then let n(bm) the subsam-

ple’s observation for the benchmark case. We need max
(
hn(bm)

iν
, hn(bm)

(EM−i)ν

)
observation for the ζi survey. Then
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5.3 Instrumental Variables Estimation

We can use the sub-sampling methods as IV’s instead of replacing x∗it observations. Now a
researcher needs two survey questions in the case of cross-sectional data, one is the original
question, which gives the menu choice variable (x∗it) and an other, which will be the IV. Usu-
ally it is not practical to ask the same questions with different possible menu choices, but one
may refer to different time periods/locations/taste/etc., where the underlying distribution is
the same. For example in the case of shifting method, one can ask ‘How much have you used
public transport in this week?’ ‘0-20%, 20-40%, 40-60%, 60-80%, 80-100%’ as the original
menu choices, with a second question: ‘How much have you used public transport in last
week?’ ‘0-10%, 10-30%, 30-50%, 50-70%, 70-90%, 90-100%’ for IV.
There are some possible alternative specification, which are out of the scope for this paper,
but worth noting. One is, when the researcher asks a more realistic question for the IV, which
depends on the question of the original menu choice response, like: ‘How much more or less
have you used public transportation in last week?’, with answers such ‘20% less, 10% less
or equal, 10% more or equal, 20% more’. This is more realistic, however it may induce an
autoregressive process, which must be modeled for proper inference.

In the case of panel data similar methods can be used as those outlined above for cross-
sections. This, however, may give us some additional flexibility. Sub-sampling now can be
used as follows: for the magnifying method, one can randomize the surveys assigned to each
individual, this way ensuring variation in the response.4 For the shifting method one can ask
each individual with randomly changing shifts.
With respect to the use IVs, one can ask the menu choice question at some t points and
the IV question at some other t time points (the same question, same M , but different class
limits). The assumption needed in this case is that, the questions are paired such a way that
they are belonging to the same underlying distribution and of course even number of type
periods are needed.
Finally, for repeated cross-section the same procedures can be applied as for panel data.

5.4 Simulation Results

Next, we show the performance of our recommended solutions. As it turns out from the
simulations, magnifying method performs well, if we replace original menu choices with the
sub-sampling values, but not that well when we use it as an IV. On the contrary, the shifting
method performs poorly when it is substituted with the original menu choices, and performs
quite well when used as an IV. Which is the best, depend on the underlying distribution.
Also it turns out truncation or censoring does not matter much when choosing the proper
adjustment method.

we retain n(bm) observations between the boundary menu choices, hn(bm)

iν
for the left boundary and hn(bm)

(EM−i)ν
for the right. In this way we achieve that as EM → ∞ we cover the whole support. The drawback is we may
drop again lots of observations in each survey, and the same properties must hold as in magnifying method
on the boundaries.

4With magnifying method dropping observation may generate a missing data problem.
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Magnifying method - used as x∗it
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10,000 -0.0182 -0.0004 -0.0093 0.0074 0.1341 -0.0058 0.0163 -0.0097
N=100,000 -0.0185 -0.0046 -0.0009 -0.0041 0.1342 0.0006 0.0032 0.0045
N=500,000 -0.0190 -0.0039 0.0011 -0.0015 0.1339 -0.0025 -0.0073 0.0040

absbias
N=10,000 0.0415 0.1186 0.2897 0.4159 0.1342 0.1403 0.3127 0.4462
N=100,000 0.0208 0.0376 0.0883 0.1317 0.1342 0.0442 0.0948 0.1353
N=500,000 0.0191 0.0161 0.0391 0.0625 0.1339 0.0211 0.0441 0.0613

se
N=10,000 0.0489 0.1476 0.3618 0.5278 0.0445 0.1765 0.3914 0.5627
N=100,000 0.0163 0.0460 0.1117 0.1670 0.0137 0.0554 0.1206 0.1705
N=500,000 0.0073 0.0200 0.0508 0.0765 0.0061 0.0262 0.0550 0.0789

numObs
N=10,000 10000 1250 208 102 10000 817 171 86
N=100,000 100000 12501 2083 1019 100000 8169 1709 860
N=500,000 500000 62501 10422 5106 500000 40830 8550 4304

Shifting method - used as IV
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10000 -0.0182 0.0074 0.0061 0.0066 0.2453 0.0174 0.0074 0.0087
N=100000 -0.0185 0.0016 0.0004 0.0006 0.2443 0.0346 0.0237 0.0229
N=500000 -0.0190 0.0019 0.0009 0.0009 0.2447 0.0308 0.0133 0.0134

absbias
N=10000 0.0415 0.1156 0.1229 0.1235 0.2453 0.4364 0.4401 0.4489
N=100000 0.0208 0.0366 0.0379 0.0376 0.2443 0.1466 0.1384 0.1397
N=500000 0.0191 0.0169 0.0168 0.0172 0.2447 0.0682 0.0647 0.0672

se
N=10000 0.0489 0.1457 0.1537 0.1550 0.0792 0.5511 0.5569 0.5620
N=100000 0.0163 0.0456 0.0477 0.0477 0.0251 0.1805 0.1733 0.1755
N=500000 0.0073 0.0208 0.0213 0.0219 0.0119 0.0817 0.0818 0.0832

corr(x∗it, zit)
N=10000 1.0000 0.8282 0.8124 0.8105 1.0000 0.5661 0.5710 0.5716
N=100000 1.0000 0.8283 0.8125 0.8105 1.0000 0.5663 0.5715 0.5721
N=500000 1.0000 0.8283 0.8125 0.8105 1.0000 0.5660 0.5711 0.5717

numObs
N=10000 10000 6575 6288 6253 10000 1886 1837 1831
N=100000 100000 65744 62878 62521 100000 18850 18361 18300
N=500000 500000 328675 314332 312553 500000 94268 91793 91494

Table 2: Exp [0.5] , Supp = [0, 1], M=3; BM: Benchmark, see Table 9.

Magnifying method - used as x∗it
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10,000 -0.0811 -0.0075 -0.0049 -0.0049 -0.0563 -0.0088 0.0066 0.0154
N=100,000 -0.0810 -0.0087 -0.0007 -0.0001 -0.0554 -0.0083 0.0003 0.0005
N=500,000 -0.0811 -0.0085 -0.0004 -0.0005 -0.0557 -0.0078 0.0009 -0.0015

absbias
N=10,000 0.0811 0.0523 0.1376 0.2002 0.0563 0.0644 0.1407 0.1980
N=100,000 0.0810 0.0183 0.0426 0.0612 0.0554 0.0210 0.0431 0.0615
N=500,000 0.0811 0.0104 0.0194 0.0286 0.0557 0.0113 0.0187 0.0272

se
N=10,000 0.0224 0.0655 0.1730 0.2470 0.0226 0.0790 0.1744 0.2483
N=100,000 0.0071 0.0212 0.0527 0.0764 0.0069 0.0254 0.0546 0.0757
N=500,000 0.0033 0.0093 0.0245 0.0349 0.0030 0.0116 0.0239 0.0341

numObs
N=10,000 10000 1251 208 102 10000 1160 202 99
N=100,000 100000 12504 2083 1021 100000 11588 2020 993
N=500,000 500000 62497 10425 5110 500000 57908 10077 4947

Shifting method - used as IV
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10000 -0.0811 -0.0045 0.0034 0.0048 -0.0563 0.0002 -0.0168 -0.0192
N=100000 -0.0810 -0.0054 0.0030 0.0041 -0.0554 -0.0030 -0.0189 -0.0210
N=500000 -0.0811 -0.0049 0.0034 0.0043 -0.0557 -0.0010 -0.0177 -0.0196

absbias
N=10000 0.0811 0.0286 0.0297 0.0300 0.0563 0.0753 0.0759 0.0759
N=100000 0.0810 0.0102 0.0099 0.0102 0.0554 0.0258 0.0289 0.0295
N=500000 0.0811 0.0059 0.0050 0.0056 0.0557 0.0107 0.0184 0.0201

se
N=10000 0.0224 0.0352 0.0371 0.0374 0.0226 0.0945 0.0940 0.0938
N=100000 0.0071 0.0115 0.0122 0.0122 0.0069 0.0319 0.0311 0.0307
N=500000 0.0033 0.0053 0.0054 0.0054 0.0030 0.0134 0.0121 0.0123

corr(x∗it, zit)
N=10000 1.0000 0.7406 0.7209 0.7185 1.0000 0.5018 0.5074 0.5083
N=100000 1.0000 0.7407 0.7209 0.7185 1.0000 0.5017 0.5075 0.5083
N=500000 1.0000 0.7407 0.7210 0.7185 1.0000 0.5019 0.5075 0.5085

numObs
N=10000 10000 8716 8546 8524 10000 4303 4176 4160
N=100000 100000 87149 85446 85228 100000 43031 41750 41585
N=500000 500000 435745 427232 426136 500000 215173 208765 207952

Table 3: N (0, 0.2) , Supp = [−1, 1], M=3; BM: Benchmark, see Table 7.

Creating artificial observations, with the magnifying method is only good, when the bias itself
is small, like in the exponential case. In other cases it does not help, only makes the standard
errors smaller. Also note that as mentioned in section 5.1, as we increase S the number of
observations becomes smaller. This leads to a moderation in the decrease of the bias and
increase in the standard errors, if the original sample size is large (eg., N = 10, 000). As the
tables show, the effective number of observations are heavily depending on the underlying
distribution, for the exponential case it is only around 1% of the data when S = 100, and

22



for the normal distribution it is more than 50%. This leads us to the recommendation not to
use too much types of surveys, while significant decrease in the bias can be achieved by only
∼ 10 surveys. More than that, will not add too much information.
The choice of methods is crucial. How well it performs depends on the underlying distribu-
tion and as it can be seen from the simulations, the magnifying method will guarantee that
the bias vanishes as one increases S, at the cost of dropping many observations. Thus we
recommend using it when one has more observation than 100,000 and a completely unknown
underlying distribution. Shifting method seems to deliver better estimator, if number of sur-
veys is small, observations are limited and the distribution is close to symmetric.

When one can use larger number of menu choices, eg., M = 5, it naturally gives better results:
bias decreases faster, and one does not need to drop that much observations.

Magnifying method - used as x∗it
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10,000 -0.0074 -0.0025 -0.0027 -0.0034 0.1304 -0.0058 -0.0077 -0.0004
N=100,000 -0.0072 -0.0026 -0.0016 0.0007 0.1307 -0.0010 0.0008 0.0028
N=500,000 -0.0078 -0.0026 -0.0018 -0.0003 0.1303 -0.0021 -0.0027 -0.0047

absbias
N=10,000 0.0394 0.0667 0.1629 0.2390 0.1305 0.0823 0.1792 0.2582
N=100,000 0.0145 0.0223 0.0523 0.0746 0.1307 0.0239 0.0568 0.0781
N=500,000 0.0090 0.0095 0.0250 0.0347 0.1303 0.0115 0.0246 0.0364

se
N=10,000 0.0489 0.0829 0.2085 0.3008 0.0437 0.1014 0.2265 0.3233
N=100,000 0.0165 0.0277 0.0651 0.0937 0.0135 0.0302 0.0710 0.0976
N=500,000 0.0073 0.0116 0.0318 0.0432 0.0059 0.0146 0.0305 0.0439

numObs
N=10,000 10000 3549 628 308 10000 2434 517 260
N=100,000 100000 35486 6285 3072 100000 24348 5169 2593
N=500,000 500000 177462 31438 15382 500000 121707 25860 12978

Shifting method - used as IV
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10000 -0.0074 0.0013 0.0003 0.0005 0.2132 0.0006 -0.0057 -0.0044
N=100000 -0.0072 -0.0024 -0.0027 -0.0027 0.2132 0.0034 0.0040 0.0041
N=500000 -0.0078 -0.0016 -0.0022 -0.0021 0.2133 0.0017 0.0028 0.0026

absbias
N=10000 0.0489 0.0886 0.0909 0.0908 0.2132 0.1639 0.1690 0.1681
N=100000 0.0165 0.0288 0.0297 0.0300 0.2132 0.0540 0.0544 0.0548
N=500000 0.0073 0.0134 0.0129 0.0130 0.2133 0.0228 0.0222 0.0217

se
N=10000 0.0843 0.1096 0.1134 0.1140 0.0739 0.2070 0.2141 0.2126
N=100000 0.0279 0.0359 0.0370 0.0374 0.0233 0.0672 0.0677 0.0682
N=500000 0.0131 0.0166 0.0161 0.0163 0.0109 0.0283 0.0275 0.0272

corr(x∗it, zit)
N=10000 1.0000 0.9413 0.9376 0.9372 1.0000 0.9018 0.9000 0.8998
N=100000 1.0000 0.9413 0.9376 0.9372 1.0000 0.9017 0.9000 0.8998
N=500000 1.0000 0.9413 0.9376 0.9372 1.0000 0.9017 0.9000 0.8998

numObs
N=10000 10000 7840 7656 7633 10000 3941 3878 3870
N=100000 100000 78379 76539 76308 100000 39386 38762 38685
N=500000 500000 391864 382659 381511 500000 196934 193827 193441

Table 4: Exp [0.5] , Supp = [0, 1], M=5; BM: Benchmark see Table 9.
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Magnifying method - used as x∗it
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10,000 -0.0318 -0.0079 -0.0013 0.0034 -0.0105 -0.0095 0.0013 0.0056
N=100,000 -0.0319 -0.0085 -0.0009 -0.0003 -0.0101 -0.0079 0.0008 0.0027
N=500,000 -0.0322 -0.0085 -0.0015 -0.0005 -0.0101 -0.0077 -0.0002 -0.0010

absbias
N=10,000 0.0337 0.0320 0.0764 0.1082 0.0200 0.0361 0.0776 0.1086
N=100,000 0.0319 0.0119 0.0237 0.0356 0.0105 0.0133 0.0249 0.0353
N=500,000 0.0322 0.0089 0.0113 0.0163 0.0101 0.0081 0.0114 0.0168

se
N=10,000 0.0233 0.0388 0.0956 0.1393 0.0232 0.0443 0.0982 0.1393
N=100,000 0.0074 0.0122 0.0299 0.0444 0.0070 0.0145 0.0313 0.0444
N=500,000 0.0036 0.0057 0.0144 0.0207 0.0030 0.0062 0.0143 0.0210

numObs
N=10,000 10000 3778 607 302 10000 3539 588 293
N=100,000 100000 37782 6064 3009 100000 35387 5878 2930
N=500,000 500000 188926 30327 15083 500000 176882 29360 14625

Shifting method - used as IV
Truncated Censored

BM S=10 S=50 S=100 BM S=10 S=50 S=100

bias
N=10000 -0.0318 -0.0009 0.0004 0.0006 -0.0105 -0.0005 0.0000 -0.0001
N=100000 -0.0319 -0.0015 -0.0002 0.0000 -0.0101 -0.0002 0.0001 0.0001
N=500000 -0.0322 -0.0013 -0.0002 0.0000 -0.0101 -0.0003 0.0005 0.0005

absbias
N=10000 0.0337 0.0222 0.0229 0.0230 0.0200 0.0327 0.0328 0.0327
N=100000 0.0319 0.0074 0.0075 0.0075 0.0105 0.0104 0.0106 0.0106
N=500000 0.0322 0.0036 0.0034 0.0034 0.0101 0.0041 0.0041 0.0042

se
N=10000 0.0233 0.0283 0.0290 0.0291 0.0232 0.0409 0.0409 0.0410
N=100000 0.0074 0.0092 0.0094 0.0094 0.0070 0.0128 0.0131 0.0131
N=500000 0.0036 0.0044 0.0044 0.0044 0.0030 0.0052 0.0052 0.0052

corr(x∗it, zit)
N=10000 1.0000 0.9120 0.9086 0.9083 1.0000 0.8691 0.8664 0.8661
N=100000 1.0000 0.9120 0.9086 0.9082 1.0000 0.8692 0.8666 0.8663
N=500000 1.0000 0.9120 0.9086 0.9082 1.0000 0.8692 0.8665 0.8663

numObs
N=10000 10000 9483 9422 9415 10000 7730 7668 7661
N=100000 100000 94830 94216 94138 100000 77279 76661 76582
N=500000 500000 474152 471082 470691 500000 386355 383282 382890

Table 5: N (0, 0.2) , Supp = [−1, 1], M=5; BM: Benchmark, see Table 7.

6 Some Further Extensions: Random Midpoints and Class
Limits

In this section we are trying to blur the lines between menu choice type observations and
continuous ones. Let us take again our example in model 4. But ask the question directly,
say by moving an indicator on the screen between 0 and 100. The “usual” way to approach
these types of observations is to consider them with a measurement error, i.e., by adding a
white noise random term. We arguing here that in some cases another approach may be more
realistic. Say that in our example one observation is 63%. This means that it can be considered
as a menu choice type observation that falls into the [65%–70%] class (if we assume 20 classes,
i.e., 5% “precision” for the observations), with random class boundaries and random class
midpoints. That is the “real” answer to the question in this case is “around 65%–70%”.

6.1 Stochastic Class Midpoints

Let us go back to equation (10). Instead of assuming that each menu/class is represented by
its midpoint zm, m = 1, . . . ,M , we assume, that the responses are randomly distributed with
a on the domain of each class Cm, ζm ∼ fζm . We assume that this distribution is known, it
is in fact the expectation on what kind of bias the respondents might make when answering.
Proceeding to equation (11), we now have

E
(
β̂∗OLS

)
=

∑M
m=1 E(ζm)

[
E
(∑N

i=1 1{xi∈Cm}(βxi + ui)
)]

∑M
m=1 E(Nm)E2(ζm)

= β

∑M
m=1 E(Nm)E(ζm)E (x |x ∈ Cm)∑M

m=1 E(Nm)E2(ζm)
.
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From this expression, we see that, that the OLS will only be unbiased if we assume that
random variable ζm have the same expected value as the underlying random variable x,
conditional on each class Cm, m = 1, . . . ,M . This, in general, is quite unlikely scenario.

6.2 Stochastic Class Boundaries

Let us now return to the definition of the class boundaries in equation (9) and consider the
case when they all are random variables on disjoint subintervals of [a, b] rather than constants.
Let δm ∼ f∆m for m = 0, . . . ,M be the independent random boundaries and the expected
value of the intermediate boundaries be E(∆m) = cm for m = 1, . . . ,M − 1. Therefore
now we have random classes of the following form C1 = [∆0,∆1), C2 = [∆1,∆2), . . . , CM =
[∆M−1,∆M ]. Note that if the distribution of ∆0 and ∆M is not trivial (Dirac delta), then
their expected value does not match the lower and upper bound of the whole domain a and
b. For simplicity, let the class value be given by the average of the corresponding two class
boundaries, Zm = (∆m + ∆m−1)/2 for m = 1, . . . ,M as in section 3. Furthermore, we also
assume that the disturbance term ε in the regression equation (2) is independent of the class
boundaries ∆. Equation (11) now reads as

E(β̂∗OLS) = β

∑M
m=1 E(Zm)E(Nm)E(x |x ∈ Cm)∑M

m=1 E(Nm)E2(Zm)
,

where

E(Nm) = N

∫
dom(Zm−1)

∫
dom(Zm)

∫ ζm

ζm−1

f(x)f(ζm)f(ζm−1) dx dζm dζm−1.

Therefore, similarly as in the case of stochastic class midpoint, β̂∗OLS is only unbiased, in the
unlikely case when the expected value of the class value Zm matches the expected value of
the underlying random variable x conditional on each class Cm, m = 1, . . . ,M .
Let us remark here that this case covers the “rounding up” problem as well, when an answer,
say 65% is in fact a rounded up value by the respondent. This 65 can be considered as
a stochastic class midpoint, with random class boundaries, where the width of a class is
dependent on the researcher’s confidence in the answer.

7 Conclusion

This paper investigated the effects of using menu choice variables in a linear regression model
when the underlying variable is not observed. This situation arises often in survey data when
the continuous variables, such as income for example, are not captured, but rather, being
replaced by a set of M menu choices. Unlike other studies in the literature, our approach
considered the more realistic case where the underlying distributions of the unobserved ex-
planatory variables are unknown and the values of each menu choice can be arbitrary assigned.
With fixed M , the results showed that using the menu choice counterparts as explanatory
variables in a linear regression will lead to biased parameters estimates for the OLS and panel
Within estimators in general. While the results provided analytical forms of the bias, the it
is unfortunately not practically possible to obtain a bias-correction since it requires informa-
tion from the distributions of the underlying explanatory variables, which are presumed to
be unknown.
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Under the assumption that no further information can be obtained for the unobserved ex-
planatory variables, this paper proposed a novel survey construction by sub-sampling. Util-
ising the fact the menu choice variables approach their unobserved counterparts when M
approaches infinity, the proposed approach essentially replaces the requirement of M being
sufficiently large to the more standard scenario where the number of individuals, N is very
large. Monte Carlo simulations showed that the proposed methods work reasonably well and
they may have significant implications on the future of survey design.

Appendix: Some Monte Carlo Simulation Results on the Bias

Let us use the same very simple model as in Section 3.
The basic setup of the Monte Carlo experiment was: εit ∼ N (0, 1), t = 1, β = 0.5, x was gen-
erated as Uniform, Normal, Exponential, and Weibull distributions with several different pa-
rameter setups. One thousand Monte Carlo experiments (mc = 1, . . . , 1000) were run for each
setup, for sample sizes (N =) 10,000; 100,000 and 500,000 and different σ2 variances. When
generating x∗, observation outside the support, whenever relevant, would be discarded (trun-
cated approach), or assigned to the limit of the menu/class (censored approach). We report the
average bias (β̄mc =

∑
mc(β̂mc−β)/1000), the average absolute bias (

∑
mc |β̂mc−β|/1000), and

the standard error of the β̂ estimated parameter (
√∑

mc(β̂mc − β̄mc)2/1000). The Kullback–

Leibler proximity/discrepancy index (Kullback and Leibler (1951), Kullback (1959), Kullback
(1987)) has also been calculated to appreciate how different a given distribution is from the
uniform:

KL =

∫
p(x) log

p(x)

q(x)
dx

where p(x) is the uniform distribution and q(x) is the relevant truncated or censored normal
distribution.
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Uniform Distribution

Uniform[-1,1]
M=3 M=5 M=10 M=20 M=50

bias
N=10,000 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
N=100,000 -0.0008 -0.0010 -0.0008 -0.0008 -0.0008
N=500,000 -0.0008 -0.0010 -0.0010 -0.0010 -0.0010

absbias
N=10,000 0.0322 0.0307 0.0303 0.0302 0.0300
N=100,000 0.0103 0.0100 0.0098 0.0097 0.0097
N=500,000 0.0049 0.0049 0.0049 0.0048 0.0048

se
N=10,000 0.0406 0.0390 0.0384 0.0382 0.0380
N=100,000 0.0129 0.0124 0.0123 0.0122 0.0122
N=500,000 0.0060 0.0059 0.0058 0.0058 0.0058

Uniform[0,1]
M=3 M=5 M=10 M=20 M=50

bias
N=10,000 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008
N=100,000 -0.0006 -0.0007 -0.0006 -0.0006 -0.0006
N=500,000 -0.0010 -0.0012 -0.0012 -0.0011 -0.0012

absbias
N=10,000 0.0298 0.0295 0.0293 0.0292 0.0292
N=100,000 0.0100 0.0098 0.0098 0.0098 0.0098
N=500,000 0.0044 0.0044 0.0044 0.0044 0.0044

se
N=10,000 0.0375 0.0372 0.0369 0.0369 0.0369
N=100,000 0.0126 0.0123 0.0123 0.0123 0.0123
N=500,000 0.0054 0.0054 0.0054 0.0054 0.0054

Uniform[0,10]
M=3 M=5 M=10 M=20 M=50

bias
N=10,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
N=100,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
N=500,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

absbias
N=10,000 0.0031 0.0030 0.0029 0.0029 0.0029
N=100,000 0.0010 0.0010 0.0010 0.0010 0.0010
N=500,000 0.0005 0.0004 0.0004 0.0004 0.0004

se
N=10,000 0.0038 0.0037 0.0037 0.0037 0.0037
N=100,000 0.0013 0.0012 0.0012 0.0012 0.0012
N=500,000 0.0006 0.0005 0.0005 0.0005 0.0005

Table 6: Uniform distribution: β = 0.5, σ2 = 5

From Table 6 the unbiasedness and consistency (in sample size) of the OLS estimator can
clearly be seen in the case of the uniform distribution, similarly as the, somewhat slower,
convergence in M . We have also done simulations with different σ2 and β, the same results
holds. For smaller σ2 the bias is smaller, for different β the results are almost exactly the
same.
Let us turn next our attention to some other distributions.

Normal Distribution

From Table 7 it is clear that the OLS estimator is biased and inconsistent, with a negative
bias, as predicted by the theory, both in the case of truncation and censoring. Although the
theory suggests that intercept picks up some of the bias, in practice the difference between
with and without intercept – in this case – is small, approximately 3-5%. It also interesting
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to notice that Kullback-Liebler index gives a good indication of the bias (see Table 8). The
bias tends to be smaller where this index is small and vice versa.

Bias
Truncated Censored

N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000
σ2
x = 0.1 -0.0593 -0.0603 -0.0607 -0.0582 -0.0567 -0.0575
σ2
x = 0.2 -0.0320 -0.0323 -0.0329 -0.0110 -0.0101 -0.0103
σ2
x = 0.3 -0.0224 -0.0223 -0.0226 0.0272 0.0283 0.0280
σ2
x = 0.4 -0.0176 -0.0171 -0.0173 0.0619 0.0630 0.0628
σ2
x = 0.5 -0.0142 -0.0139 -0.0141 0.0938 0.0950 0.0948
σ2
x = 0.6 -0.0118 -0.0118 -0.0120 0.1239 0.1248 0.1245
σ2
x = 0.7 -0.0102 -0.0103 -0.0105 0.1517 0.1527 0.1524
σ2
x = 0.8 -0.0092 -0.0091 -0.0093 0.1783 0.1791 0.1788
σ2
x = 0.9 -0.0082 -0.0082 -0.0084 0.2032 0.2042 0.2039
σ2
x = 1 -0.0074 -0.0075 -0.0077 0.2271 0.2280 0.2278

Abs. Bias
Truncated Censored

N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000
σ2
x = 0.1 0.0730 0.0603 0.0607 0.0710 0.0568 0.0575
σ2
x = 0.2 0.0485 0.0326 0.0329 0.0417 0.0151 0.0106
σ2
x = 0.3 0.0416 0.0233 0.0226 0.0435 0.0285 0.0280
σ2
x = 0.4 0.0382 0.0188 0.0173 0.0651 0.0630 0.0628
σ2
x = 0.5 0.0363 0.0162 0.0141 0.0941 0.0950 0.0948
σ2
x = 0.6 0.0350 0.0147 0.0121 0.1239 0.1248 0.1245
σ2
x = 0.7 0.0339 0.0136 0.0107 0.1517 0.1527 0.1524
σ2
x = 0.8 0.0335 0.0129 0.0097 0.1783 0.1791 0.1788
σ2
x = 0.9 0.0331 0.0125 0.0089 0.2032 0.2042 0.2039
σ2
x = 1 0.0326 0.0121 0.0084 0.2271 0.2280 0.2278

SE
Truncated Censored

N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000
σ2
x = 0.1 0.0661 0.0212 0.0098 0.0662 0.0210 0.0088
σ2
x = 0.2 0.0520 0.0165 0.0079 0.0518 0.0156 0.0068
σ2
x = 0.3 0.0473 0.0150 0.0072 0.0457 0.0137 0.0059
σ2
x = 0.4 0.0451 0.0144 0.0068 0.0421 0.0128 0.0055
σ2
x = 0.5 0.0436 0.0139 0.0067 0.0403 0.0124 0.0053
σ2
x = 0.6 0.0428 0.0136 0.0065 0.0387 0.0120 0.0051
σ2
x = 0.7 0.0419 0.0134 0.0064 0.0379 0.0117 0.0050
σ2
x = 0.8 0.0415 0.0132 0.0064 0.0368 0.0115 0.0049
σ2
x = 0.9 0.0412 0.0132 0.0063 0.0360 0.0114 0.0047
σ2
x = 1 0.0408 0.0131 0.0063 0.0356 0.0113 0.0047

Table 7: Truncated and Censored Normal Distributions, estimated without inter-
cept, M = 5, β = 0.5, σ2 = 1, Supp = [−1, 1]
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Truncated Censored

σ2
x = 0.1 0.7396 0.7407

σ2
x = 0.2 0.2287 0.2536

σ2
x = 0.3 0.1091 0.1783

σ2
x = 0.4 0.0634 0.1829

σ2
x = 0.5 0.0414 0.2109

σ2
x = 0.6 0.0291 0.2463

σ2
x = 0.7 0.0216 0.2835

σ2
x = 0.8 0.0167 0.3203

σ2
x = 0.9 0.0132 0.3558

σ2
x = 1 0.0197 0.3899

Table 8: Kullback-Leibler ratio: Uniform vs. Truncated/Censored Normal with
different σ2

x values, a = −1, b = 1

Exponential Distribution and Weibull Distributions

We carried out a large number of simulations with different parametrisations for both dis-
tributions. In Table 9 we report the bias from the exponential distribution, which highlights
the effect of censoring. Although we do no observe large bias with truncation, when the menu
choices are censored the bias increases dramatically.
From Table 10, the main takeaway is that, as expected, there is no convergence in the sample
size, while the convergence speed in M is “slow” and depends heavily on the shape of the
distribution. Also, the results about the Kullback-Liebler index (not reported here) are very
similar to those obtained for the normal distribution, i.e., a larger index implies systemati-
cally a larger bias.
We have also tried several different distributions and parameterisation and the main take
away is very similar.

Exp [λ] , Supp = [0, 1]
Truncated Censored

M=3 M=5 M=10 M=20 M=50 M=3 M=5 M=10 M=20 M=50

bias
N=10,000 -0.0182 -0.0074 -0.0027 -0.0015 -0.0011 0.1341 0.1304 0.1235 0.1190 0.1160
N=100,000 -0.0185 -0.0072 -0.0025 -0.0014 -0.0011 0.1342 0.1307 0.1239 0.1193 0.1163
N=500,000 -0.0190 -0.0078 -0.0032 -0.0020 -0.0017 0.1339 0.1303 0.1235 0.1190 0.1160

absbias
N=10,000 0.0415 0.0394 0.0388 0.0388 0.0388 0.1342 0.1305 0.1237 0.1191 0.1162
N=100,000 0.0208 0.0145 0.0133 0.0131 0.0131 0.1342 0.1307 0.1239 0.1193 0.1163
N=500,000 0.0191 0.0090 0.0064 0.0060 0.0059 0.1339 0.1303 0.1235 0.1190 0.1160

se
N=10,000 0.0489 0.0489 0.0489 0.0490 0.0490 0.0445 0.0437 0.0427 0.0422 0.0419
N=100,000 0.0163 0.0165 0.0164 0.0164 0.0164 0.0137 0.0135 0.0131 0.0130 0.0129
N=500,000 0.0073 0.0073 0.0073 0.0073 0.0073 0.0061 0.0059 0.0058 0.0057 0.0057

Table 9: Exponential distribution: β = 0.5, σ2 = 5, λ = 0.5
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Weibull [b, c] , Supp = [0, 1]
Truncated Censored

M=3 M=5 M=10 M=20 M=50 M=3 M=5 M=10 M=20 M=50

bias
N=10,000 -0.0369 -0.0128 -0.0031 -0.0010 -0.0004 1.8197 1.7475 1.6828 1.6486 1.6278
N=100,000 -0.0369 -0.0130 -0.0033 -0.0011 -0.0005 1.8209 1.7487 1.6840 1.6498 1.6289
N=500,000 -0.0371 -0.0131 -0.0035 -0.0013 -0.0007 1.8197 1.7475 1.6828 1.6486 1.6278

absbias
N=10,000 0.0371 0.0178 0.0144 0.0142 0.0141 1.8197 1.7475 1.6828 1.6486 1.6278
N=100,000 0.0369 0.0131 0.0056 0.0049 0.0048 1.8209 1.7487 1.6840 1.6498 1.6289
N=500,000 0.0371 0.0131 0.0038 0.0024 0.0022 1.8197 1.7475 1.6828 1.6486 1.6278

se
N=10,000 0.0174 0.0179 0.0179 0.0179 0.0179 0.0492 0.0474 0.0458 0.0450 0.0445
N=100,000 0.0058 0.0060 0.0060 0.0060 0.0060 0.0154 0.0148 0.0144 0.0141 0.0140
N=500,000 0.0026 0.0027 0.0027 0.0027 0.0027 0.0071 0.0069 0.0066 0.0065 0.0064

Table 10: Weibull distribution: β = 0.5, σ2 = 0.5, b = 1, c = 0.5
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To be done
Most of the tasks to be done relate to Sections 5.1 and 5.2:

• Write up analytically the 2 methods on Section 5.1 and then they use in 5.2

• Derive for all the above cases the consistency and the speed of convergence.

• If feasible and not overly complicated, how the increase in the sample size N and S
AND given N the increase in S reduce the bias of the OLS expressed in (12) and (13),
as this would be the most important guideline for practitioners.
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