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1 Introduction

Over the past decade, there has been renewed interest in production networks and the role
that individual production units (firms/sectors) can play in propagation of shocks across
the economy. This literature builds on the multisectoral model of real business cycles
pioneered by Long and Plosser (1983), and draws from a variety of studies on social and
economic networks, including network games, cascades, and micro foundations of macro
volatility. Notable theoretical contributions in this area include Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012), Horvath (1998, 2000), Gabaix (2011), Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2016), and Siavash (2016). Empirical evidence for such
propagation mechanism is presented in Foerster, Sarte, and Watson (2011), Acemoglu,
Akcigit, and Kerr (2016), and Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016). One im-
portant issue in this literature relates to conditions under which sector-specific shocks are
likely to have lasting aggregate (macro) effects. Similar issues arise in financial networks
where it is of interest to ascertain if an individual bank can be considered as “too big
to fail”. Recent reviews are provided by Carvalho (2014) and Acemoglu, Ozdaglar and
Tahbaz-Salehi (2016).

In this paper we consider a production network with unobserved common technological
factors, and derive an associated price network which is dual to the production network,
which we use to derive an exact characterization of the effect of sector-specific shocks on
aggregate output. We show that sector-specific shocks have aggregate effects if there are
“dominant” sectors in the sense that their outdegrees are not bounded in the number of
production units, N, in the economy. The outdegree of a sector is defined as the share
of that sector’s output used as intermediate inputs by all other sectors in the economy.
The degree of dominance (or pervasiveness) of a sector is measured by the exponent §
that controls the rate at which the outdegree of the sector in question rises with N.
This measure turns out to be the same as the exponent of cross-sectional dependence
introduced in Bailey et al. (2016), for the analysis of cross-section dependence in panel
data models with large cross-section and time dimensions.

Our approach differs from Acemoglu et al. (2012) in three important respects. First,
we provide a more general setting that allows for unobserved common factors and derive
a spatial model in sectoral prices that can be taken directly to the data. We establish a
one-to-one relationship between the pervasiveness of price shocks and aggregate output
shocks. Second, Acemoglu et al. (2012) express the aggregate output as a reduced form
function of the sector-specific shocks, based on which they are only able to derive a
lower bound to the decay rate of sector-specific shocks on aggregate outcomes. They
consider the first- and second-order effects, and acknowledge that ignoring higher-order
interconnections might bias the results. In contrast, the present paper provides an exact
expression for the effects of sector-specific shocks on aggregate fluctuations, and shows
that its rate of decay only depends on the extent to which the dominant unit (sector) is
pervasive, namely the one with the largest §, denoted by d,.c. We derive upper as well as
lower bounds for the rate of convergence of the variability of aggregate output in terms
of N, and show that these bounds converge at the same rate, and thus establish an exact
rate of convergence for aggregate output variability. Finally, Acemoglu et al. (2012) do not
identify the dominant unit(s). Instead, they approximate the tail distribution, for some



given cut-off value, of the outdegrees by a power law distribution and provide estimates
for the shape parameters. By contrast, we propose a nonparametric approach, which
is applicable irrespective of whether the outdegrees are Pareto distributed, and does not
require knowing the cut-off value above which the Pareto tail behavior begins. The inverse
of the proposed estimator of d,,., is an extremum estimator of the shape parameter of
the Pareto distribution, . It is simple to compute and is given by the average log of the
largest outdegree relative to all other outdegrees, scaled by the size of the network, N.

Small sample properties of the extremum estimator are investigated by Monte Carlo
techniques and are shown to be satisfactory. A comparison of the estimates of the shape
parameter 3 based on Pareto distribution with the estimates based on the inverse of the
extremum estimator of 0., shows that the latter performs much better, particularly
when N is large (300+). Furthermore, the extremum estimator is shown to perform well
even under a Pareto tail distribution, whereas the commonly used estimators of the shape
parameter, [3, display substantial biases if the true underlying distribution is non—Pareto.

Application of our estimation procedure to US input-output tables over the period
1972-2002 yields yearly estimates of d,,,, that lie between 0.72 and 0.82. These estimates
are by and large close to the inverse of the estimates of the shape parameter 5 considered in
Acemoglu et al. (2012) when a 20% cut-off value is used, although the log-log regression
estimates of § tend to be highly sensitive to the choice of the cut-off values and the
different orders of interconnections considered. To provide more reliable estimates, we
also conduct panel estimation and find that the largest estimate of §,,., is about 0.76
for the sub-sample covering 1972-1992 and 0.72 for the sub-sample covering 1997-2007.
Quite remarkably, we find that estimates of d,,,x and the identity of the dominant sector
are rather stable throughout the period from 1972 to 2007, with the wholesale trade sector
identified as the most dominant sector for all years except for the year 2002 when the
wholesale trade is estimated to be the second most dominant sector. Our estimates also
suggest that no sector in the US economy is strongly dominant, which requires the value
of dmax to be close to unity, whilst the largest estimate we obtain is around 0.8. Overall,
our analyses support the view that sector-specific shocks have some macro effects, but we
do not find such effects to be sufficiently strong to explain aggregate fluctuations.

The rest of the paper is organized as follows. Section 2 presents the production net-
work. Section 3 derives the associated price network. Section 4 introduces the concepts
of strongly and weakly dominant, and non-dominant units, and network pervasiveness. It
also shows the relation between the degree of network pervasiveness and the shape para-
meter of the power law distribution. Section 5 derives exact conditions under which micro
(sectoral) shocks can lead to aggregate fluctuations. Section 6 introduces the extremum
estimator, derives its asymptotic distribution, and shows its robustness to the choice of
the underlying distribution. Section 7 provides evidence on the small sample properties
of the alternative estimators of 0., using a number of Monte Carlo experiments. Section
8 presents the empirical application, and Section 9 concludes. Some of the mathematical
details are provided in the Appendix. Additional Monte Carlo results are provided in an
Online Supplement.

Notations: The total number of cross section units (sectors) in the economy is de-
noted by N, which is then decomposed into m dominant units and n non-dominant
units. The number of dominant units is also decomposed into strongly dominant units



and weakly dominant units. (See Definition 1). §; denotes the degree of dominance (or
pervasiveness) of unit 7 in a network, where i =1,2,...,N,and 0 < §; < 1. If { fy} 5_, is
any real sequence and {gn}5_, is a sequence of positive real numbers, then fy = O(gy)
if there exists a positive finite constant K such that |fy| /gy < K for all N. fy = o(gn)
if fn/gn — 0, a8 N — oo. If {fy}v_; and {gn}x_, are both positive sequences of real
numbers, then fy = © (gy) if there exists Ny > 1 and positive finite constants Ky and K7,
such that infy>n, (fv/gn) > Ko, and supysy, (fv/gn) < K1. 0(A) is the spectral radius
of the N x N matrix A = (a;;), defined as o(A) = max {|\;|,i=1,2,..., N}, where )\;
is an eigenvalue of A and |\ (A)] > [A2(A)] > ... > [An(A)]. [|A], = max SN |al

1<i<N “I=1

and |A|, = max > V. |a;| are the maximum row sum norm and the maximum column
L gy ei=st i

sum norm of matrix A, respectively. Generic finite positive constants are denoted by K
and C; fort=0,1,2,....

2 Production network

To show how the two strands of literature on production networks and cross-sectional
dependence are related, we begin with a panel version of the input-output model developed
in Acemoglu et al. (2012). Our goal is to provide an exact characterization of the effect
of unit-specific shocks on aggregate output. We assume that production of sector i at
time ¢, q;, is determined by the following Cobb-Douglas production function subject to
constant returns to scale:
N
gie = GO Ty, for i=1,2,.. Ny t=1,2,....T, (1)
j=1
where [;; is the labor input, g;;; is the amount of output of sector j used in production
of sector i, w;; is the share of sector j’s output in the total intermediate input use of
sector i, and p is capital’s share of output (0 < p < 1). We assume that w;; > 0 for all
7 and 7, and the input shares of all sectors sum up to one, namely, Z;VZI w;j = 1, for all

1 =1,2,...,N. Finally, u; is the productivity shock to sector i, composed of common
and idiosyncratic components. Specifically, u;; is decomposed into 7 (7 is finite) common
factors £, = (fir, fo, . - ., fre)', with factor loadings ;, and a sector-specific shock, e;;:

uyy = vifi + i (2)

Following the literature, and without loss of generality, we shall assume that f; and ¢;; are
uncorrelated. Examples of common factors include common technological shocks, regu-
latory changes and organizational innovations that may affect production in all sectors.
The factor loadings, v; = (Vi1» Vi - - Vi) » for i = 1,2,..., N, are fixed constants that
measure the relative importance of the common factors for sector i. Following Bailey et al.
(2016), we use ay, for £ = 1,2,...,r, to denote the cross-section exponent of 7,,, which
measures the degree of pervasiveness of factor fy, over the N sectors in the economy.
More specifically, oy is defined by

3 bl =0 (V") 3
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with 0 < ay < 1. The standard factor model sets oy = 1, and treats the common factors
as "strong" or "fully pervasive", in the sense that changes in f, affects all sectors of
the economy. But in what follows we shall also consider cases where one or more of the
factors are weak in the sense that oy < 1 for some (. If oy = max (g, g, ..., q,) = 1,
there exists at least one "strong" or "pervasive" factor. If apg., < 1, factors are weak
but could be influential if .y is close to unity. Following Acemoglu et al. (2012), we
shall assume that the sector-specific shocks are cross-sectionally independent with zero
means and finite variances, Var(e;) = o2, such that 0 < 0? < 0? < 3> < K < co. The
independence assumption is not necessary and can be relaxed by assuming that ¢;; are
cross-sectionally weakly dependent. We also assume that ¢;; are serially uncorrelated,
although this is not essential either for our main theoretical results.
The amount of final goods, c;;, are defined by

N
Cit ZQit_ZjS,ta 1= 1727"'7N7 (4)

Jj=1

which are consumed by a representative household with the Cobb-Douglas preferences

N
u (Clt,c2t7 Ce >CNt) =A H C;t/N, A>0. (5)
i=1
We further assume that the aggregate labor supply, [;, is given exogenously and labor
markets clear, [, = Zfil Lit.
Let Py, Py, ..., Py be the sectoral equilibrium prices, Wage; the equilibrium wage

rate, and denote their logarithms by p; = log (Py), w; = log(Wage,). Then it can be
shown by using similar arguments as in Appendix A of Acemoglu et al. (2012) that in the
competitive equilibrium the logarithm of real wage, which is taken as a measure of GDP
(or real value added), is given by

wy — Py = 1+ viyuy, (6)

where P, is the aggregate log price index defined by,

N
Pr=N"> pu=N1yp, (7)
i=1
Pt = <p1t>p2t, cee 7pNt)/a u; = (Ult, Uty - - - >uNt)l7 and
1-— _
UN:(U17U27"'7UN>,:( Np) (IN_pW,) 11N7 (8)

where W is the N x N matrix W = (w;;), 1y is an N x 1 vector of ones, and p is a

constant independent of u;, which is given by

p=1=p) " |(1=p)log(l—p)+plog(p)+ pZZinij log (w;)

i=1 j=1



The (log) real-wage equation, (6), generalizes equation (3) in Acemoglu et al. (2012)
by allowing for time variations in prices. By normalizing p, such that p, = —p and
ignoring common factors, Acemoglu et al. (2012) concentrate on w; = v'y&; as a mea-
sure of aggregate output, where &, = (ey4,€9,. .. ,5Nt)'. The authors refer to vy as
the "influence vector" (their equation (4)), and show that v; > 0, and 1yvy = 1.!
They measure aggregate volatility by the standard deviation of aggregate output, namely
[Var (vye,)]"?, and focus on the asymptotic properties of v'ye;, as N — oo. Since
Var (viye,) = v\Var (g;) vy, it follows that

o (Vyvy) < Var (Vye;) < 6% (viyon),

and hence the asymptotic properties of Var (v/ye;) is governed by v/yvy. The same
conclusion also follows if we allow for common factors as in (2) so long as the factors are
weak, in the sense that apa.x = max (g, ag, ..., q.) < 1.2, This result follows by noting
that in the presence of common factors

(Vyon) An (Bun) < Var (Viyw) < (Vyon) A (Bun),

where Ay (2, n) and A (¥, n) are, respectively, the smallest and largest eigenvalues of
Y.n = FE(uw), and u; = (ugg, gy, - . ., ung) = Tif + €, with T = (v1,99, ..., vy) - In
the case where u, is cross-sectionally weakly dependent, all eigenvalues of ¥, y will be
bounded in N and the asymptotic behavior of Var (vyu;) continues to be determined by
that of vyvy.

Acemoglu et al. (2012, p.2009) derive a lower bound for vyvy and show that?

N
viyoy > CON*1+01N*ZZd§, (9)

Jj=1

where ¢y and ¢; are finite constants that do not depend on N, and d; is the outdegree of
the j unit defined by d; = Zi\; w;;. In their analysis, Acemoglu et al. (2012) consider
the limiting behavior of N2 Z;VZI d?. But as we shall see below, it is also important
to consider the limiting behavior of individual column sums of W, and in particular to
identify the ones that rise with NV, as distinguished from those that are bounded in N. To
fully understand the limiting behavior of v/yvx we also need to investigate the limiting
properties of the upper bound to v/yvy which is not addressed by Acemoglu et al. (2012).

3 Price network as a dual to the production network
Instead of analyzing the aggregate output directly in terms of the sector-specific shocks,

we derive a price network which is dual to the production network discussed in Section
2. By a price network we mean the interconnections that exist between the sectoral

'See Appendix A of Acemoglu et al. (2012).
2See Chudik et al. (2011) Theorem 3.1.
3These authors also consider higher-order interconnection terms which they include on the right-hand-

side of vy, but these terms are dominated by N2 Z;\Ll d?
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prices through the input-output coefficients. In this way, we are able to obtain an exact
expression for the decay rate of aggregate volatility, rather than just a lower bound to it.

Given sector prices, Py, Py, . .., Py, and the wage rate, Wage,, solving sector i’s problem
leads to P
PWi;5 L5t G5t
Qijp = P, (10)
and

(1 — ;0) Pitqit

= U0 (1)
Substituting the above results in (1) and simplifying yields
N
Pit = pzwijpjt + (1 =plwe = b — (1= p) ua, (12)
j=1

where the price-specific intercepts, b;, depend only on p and W,

N
bi = (1— p)log (1 — p) + plog (p) + pY_wj;log(w;;), (13)
j=1
fori =1,2,...,N. In cases where w;; = 0, we set w;;log (w;;) = 0 as well. In matrix

notation the "price network", (12), can be written as
p: = pWp, + (1 = p)widy — [b+ (1 - p)u], (14)

where b = (b, ba, ..., by)".
A dual to the price equation in (12) can also be obtained using (10) in (4) to obtain

N
Sit = pzwjisjt + Cit, (15)

=1

where Cj; = Pycy, and Sy = Pyqy is the sales of sector i. The sales equation, (15), can
also be written as

St = pW,St -+ Ct, (16)

where S; = (Si;, Sar, ..., Snt) and C; = (Cyy, Cyy, ..., Cny)’. Note that W enters as its
transpose, W', in (16) as compared to the price equations in (14).
Aggregating (11) over i, we have

N N
Wage,» L= (1—p) Y Puti,
=1

i=1
or N
i Wage, = (1 — p) ZS“ =(1-p) 1S (17)
i=1
Also using (16)
S = (Iv — pW') ' C,, (18)

6



where (Iy — pW’) ™" is known as the Leontief inverse.! Using (18) in (17) now yields the
following expression for the total wage bill,

L Wage, = (1 — p) 1y (Iy — pW') " C,. (19)

Similarly, solving (14) for the log-price vector, p;, and applying Lemma A.1 in Ap-
pendix A we have

pi=(1—p)w (Iy — pW) 'Ly — (1 = p) (Iy — pW) ' &,, (20)

where £, = (1 —p) 'b + w,. Then the aggregate log price index, P,, defined in (7), is
given by

[ =p)
Py = N

1y (Iy — pW) ™ 1y | wy — “J_V") 1y (Iy — pW) 7' &, (21)

But since w;; > 0, Wly =1y, and 0 < p < 1, then (Iny — pW)_1 1y =15/ (1 —p), and
hence (21) can also be written as

Wy — Py = 'UE\fgt, (22)

where vy is the influence vector given by (8). Now let x; = p; — w;1x, and rewrite (14)
in terms of log price-wage ratios, x;, as

x; = pWx; —b— (1 —p)uy. (23)

Equation (23) represents a first-order spatial autoregressive (SAR(1)) model.
Consider now the following simple average over the units, x;, for : = 1,2,..., N, in

the above network .

TNt = N]-INXt = — (Wi — D),

which is the negative of the aggregate output measure, defined by (6). Also, using (22)
we have
wi— P =~Tng = (1= p)" (Viyb) + Vi, (24)

which fully specifies the dependence of aggregate output on the productivity shocks.

Note that equations (19) and (24) are dual of each other. (19) gives the total wage
bill in terms of a weighted sum of consumption expenditures, with the weights given by
(1 —p) Iy — pW) " 1y, whilst (24) gives the log of the real wage rate in terms of the
aggregate shocks. Recall that u, = I'f,+¢,, where T = (v,,7,,...,7x) , and common and
sectoral shocks are assumed to be uncorrelated. The key issue is how much of the cyclical
fluctuations in (log) real wages, Var (ZTy:), is due to common shocks, Var (v T'f;), and
how much is due to sectoral shocks, Var (vye;).

There are two advantages in directly focusing on the price network model, (23). First,
it allows us to relate the production network to the literature on spatial econometrics
that should facilitate the econometric analysis of production networks, and allows us to

4 A proof that the Leontief matrix is invertible even in the presence of dominant units is provided in
Lemma A.1 of Appendix A.



address more easily the issues of identification and estimation of the structural parameters,
including capital’s share p, factor loadings «, and error variances o2, fori = 1,2,..., N.5
The direct use of the SAR model, (23), also enables us to provide exact bounds on
Var (ZTy:) = Var (w; — pt) rather than the lower bounds obtained by Acemoglu et al.
(2012). Instead, by considering the price network explicitly we are able to show that at
most only a few sectors can have significant aggregate effects, and these sectors are those
with outdegrees that rise with N. The rate at which the outdegrees rise with N could
differ across sectors and it is important that such sectors are identified and their empirical

contribution to aggregate fluctuations evaluated.

4 Degrees of dominance of units in a network and
network pervasiveness

Consider a network represented by a given N x N adjacency matrix W = (w;;), where
w;; > 0 for all 7 and j, and W is row-normalized such that Zjvzl w;; = 1, for all 1.
Denote the j™ column of W by w.; and the associated column sum by d; = 1yw.;, the
outdegree of unit j. The outdegree is one of many network centrality measures considered
in the literature. The most widely used centrality measure is degree centrality, which
refers to the number of ties a node has, and in a directed network can be classified into
indegree and outdegree. The indegree counts the number of ties a node receives, and
the outdegree counts the number of ties a node directs to others. In this paper, we are
focusing on how the weighted outdegree vary with N and normalize the weighted indegree
(row sums of W) to one, because we are interested in studying the influence of a unit
to other downstream units. Other centrality measures, including closeness, betweenness,
and eigenvector centralities, are not relevant for our purpose, since we aim to characterize
the effects of idiosyncratic shocks to a unit on some aggregate measure of the network,
rather than the pattern of interdependencies of the network. To this end, we introduce
the notions of strongly and weakly dominant units in the following definition. We consider
units with nonzero outdegrees and assume throughout that d; > 0, for all j.

Definition 1 (d-dominance). We shall refer to unit j of the row-standardized network
W = (wy; > 0) as §;-dominant if its (weighted) outdegree, d; = S, wy; > 0, is of order

N%, where §; is a fixed constant in the range 0 < §; < 1. More specifically,
d; = k;N%, for j =1,2,..., N, (25)

where r; is a strictly positive random variable defined on 0 < k < k; <k < K, where &
and k are fixed constants. The unit j is said to be strongly dominant if §; = 1, weakly
dominant if 0 < §; < 1, and non-dominant if 6; = 0. We refer to J; as the degree of
dominance of unit j in the network.

Remark 1. It is worth noting that ¢; is identified by requiring that x; is a strictly positive
random variable bounded in N, and d; is a fized constant that does not vary with N .

For example, see the recent contributions of Bai and Li (2013) and Yang (2018) on estimation of
SAR models with unobserved common factors.



In the standard case where the column sum of W is bounded in N we must have
d; = 0 for all j, that is, all units are non-dominant. W will have an unbounded column
sum if §; > 0 for at least one j. But due to the bounded nature of the rows of W,
not all columns of W can be d-dominant with 6, > 0 for all j. To see this, let d =
(dy,dy, ... ,dy) = W 1y, and note that

1d =1, W1y = N. (26)

Hence, there must exist 0 < r; < K < oo for j =1,2,..., N, such that

N
Y kiN% =N,
j=1
for a fixed N and as N — oo. Let i = min (01, da,...,0y), and note that

N
N =Y KN% > NeNow»,

j=1

which in turn implies

ENOmin < (27)

Since by assumption £ > 0 and d,;, > 0, it is clear that (27) cannot be satisfied for all
values of N unless d,,;, = 0, which establishes that not all units in a given network can
be dominant. This result is summarized in the following proposition.

Proposition 1. Consider the network represented by W = (w;; > 0), and assume that W
is row-standardized. Suppose that the outdegrees of the network, d; = ZZ]\; w;j, are non-
zero (d; > 0) and follow the power function, (25), with 0; being the degree of dominance
of unit j in the network. Then not all units of the network can be 0-dominant, with d; > 0

for all j.

Let Sy = N1 Zjvzl fij‘Sj, and note that since K > 0 and hence

N N
SN _ N—l Z I{je(sj InN > EN_l Z 6(5j lnN' (28)
P =1
Now using a Taylor series expansion of €% ™V we obtain
N N [e'¢) s 0 N
5% (In N) (In N’
6;InN __ J _ S
Sy [ 3 S s (5
=1 =1 =1 =1 =1

which if substituted in (28) yields

SNZE 1+Z (29)



Since Sy = 1, and all the summands over s in (29) are nonnegative as 6; > 0 and In N > 0,
it is necessary that

(2 85) vy
sIN

— 0, as N - oo, forall s=1,2,3,.... (30)

Also note that for any finite s, (In N)° / (s!N) — 0, as N — o0, and since

= lN _N-1
Z - N — 1, as N — o0,

s=1

then it must be that (InN)*/(s!N) — 0, as N — oo, for all s, including s — oo.
Furthermore, since 0 < §; <1 then

N N
65 <> 6, fors > 1,
j=1 j=1

and

(S5505) vy ;) ()
sIN Z sIN
Hence, for conditions in (30) to be met it is sufficient that {J,} satisfies the following
summability assumption.

Assumption 1. The degrees of dominance of all units in a network, {3, j =1,2,...,N},
are summable, namely,

N

j=1

As we shall see, Assumption 1 plays an important role in the proof of consistency of
the extremum estimator proposed in Section 6.2 below.

Suppose now that m units are strongly dominant with J; = 1, and the rest are non-
dominant with §; = 0. Then using (29) we have

oS ] s ()]

and since Sy = 1, it follows that m cannot rise with /N, and must be a fixed integer.

In the case where m units are dominant with ¢, > 0, then m must be finite if the
summability condition given by (31) is to hold. For example, suppose that only m units
are dominant. Then Zjvzl d; > Mbmin > 0, and from the summability condition (31) we

SN>I€

have K > Z;VZI d; > MOmin, from which it follows that m < K /6, and in consequence
m must be bounded in N. These findings are summarized in the next proposition.

10



Proposition 2. Consider the network represented by W = (w;; > 0), and assume that
W is row-standardized, and the outdegrees of the network, d; = Zf\il Wjj, are non-zero
(dj > 0). Then the number of strongly dominant units must be fized and cannot rise with
N. Moreover, under Assumption 1 the number of dominant units with 6; # 0 must be

finite, where 0; is the degree of dominance of unit j in the network.

Remark 2. Analogous results have also been found in Chudik, Pesaran, and Tosetti
(2011) regarding the possible number of strong factors, and in Chudik and Pesaran (2013)
on the number of dominant units in large dimensional vector autoregressions.

Using the concept of §-dominance of units in a given network, we now introduce the
idea of network pervasiveness, which is relevant for characterization of the degree to which
shocks to an individual unit diffuse across the network.

Definition 2 (Network pervasiveness). Degree of pervasiveness of a given row-standardized
network, W = (w;; > 0, Z;Vﬂ w;; = 1), is defined by dmax = max (dy,02,...,0y), where
§; is the degree of dominance of its j™ unit.

The degree of network pervasiveness, d,.x, defined in Definition 2, is related to 3, the
shape parameter of the power law assumed by Acemoglu et al. (2012, Definition 2) for

the outdegree sequence, {d,ds, ...,dy}. To see this, we first use the specification of the
outdegrees given by (25) in (9) to obtain

m N 2

N—m K

’ -1 —2 2 AT25; J
vyUN > coNT T+ N E /ij I 4 e (E N ),

j=1 j=m+1

where (N —m) 'S8 k2 = O(1). Also, recall that m must be finite if {d,} is sum-
j=m-+1""] J

mable (Proposition 2). Therefore, recalling that x; < k, then

m
N*Z Z KZJQ-NQ(Sj S m/—QQNQ(Jmaxfl),

j=1

and the limiting behavior of v/yvy will be determined by that of N2(max—1) namely the
cross section exponent of the strongest of the dominant units, ..

Consider now Corollary 1 of Acemoglu et al. (2012), which establishes that aggregate
volatility behaves asymptotically as N~20-1/6=2% for some small €5 > 0 and 8 € (1,2).
Matching this rate of expansion with N2®max=1) we have

2(0max — 1) > =2(8 = 1)/ — 2¢5,

Or Omax > 1/ — €g. Therefore, dmay can be viewed as measuring the inverse of /3, a result
that we formally establish in Section 6.

We are now in a position to consider the exact rate at which Var (ZTy) varies with .
We will show that it is governed by the pervasiveness of the network, measured by 0 ax,
and the maximum of the exponents of the factors, am.x = max (o, ag,...,«,), where
ap (0 =1,2,...,r) is defined by (3). For unit-specific shocks to dominate the macro or
common factor shocks we need dpyax > Qmax > 1/2.
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5 Price networks with dominant units

Consider the price network (23), and assume that it contains one dominant unit and
n = N — 1 non-dominant units. The analysis can be readily extended to networks with
m dominant units (m fixed), but to simplify the exposition here we confine our analysis
to networks with one dominant unit. (The derivations for the general case is provided
in Appendix B). In addition, the analysis is conducted assuming a single common factor
for ease of notation and it can be easily extended to allow for multiple factors without
additional complexity.

Without loss of generality, suppose that the first element of x;, namely x;, is the
dominant unit, and write (23) in the partitioned form as (setting wq; = 0)

Tt 0 PWio ) ( L1t ) ( g1t >
— + : 32
< Xot > ( pwWar pWay Xot ot (32)

where Xoy = (Tar, T3¢, ..., Tne)'s Wor = (war, w31, ..., W), Wiz = (Wiz,wis, ..., win)’,
g2 = (Gat; 9365 - - - gne)'s and gy = —bi— (1 — p) (v, fi +eir), fori = 1,2,... . N. Wy is the
n X n weight matrix associated with the n non-dominant units and is assumed to satisfy
the condition |p|||Wae||; < 1. Furthermore, note that since

B 0 wi, 1y (1
WlN_<W21 W22)<1n)_(1n)7

then wi,1,, = 1, and 1,, — wg; = Wy1,,. The latter result states that the ith row sum
of Ways is given by 1 — w;; < 1, and considering that 0 < w;; < 1, then we must have
Wl < 1, which also establishes that o(Wa3y) < 1, where o(A) denotes the spectral
radius of A. Under the assumption that [p| < 1, by Lemma A.1 in Appendix A the
system of equations (32) has a unique solution given by

—1
L1t 1 —pW/12 ) < gt ) g-!

_ = , 33

( Xot > ( —pWa1 Sa2 82t (P)e: (33)

where Sgp = I, — pWas. In addition, since |p|[[Wasl|; < 1, it follows from Lemma A.2 in
Appendix A that Sy, has bounded row and column norms. For future reference also note
that the (1,1)" element of S™'(p) is given by (;', where ¢, = 1 — p*W/|,Sorwo; # 0.
Finally, to allow unit 1 to be §-dominant we consider the following exponent formulation

N
dy = Z wi = K N, (34)
i—2

where d; is allowed to rise with N, with k; > 0 and 0 < d; < 1. Recall that x; is a
strictly positive random variable bounded in N, and §; is a fixed constant that does not
vary with N.

The system of equations (32) can now be solved for x5, in terms of xy;, namely (recall
that by assumption |p| [[Wasl|; < 1)

In deriving (36), it is required that ¢(; # 0. This condition is met since the N x N matrix on the
right-hand-side of (33) is non-singular.

12



Xot = Z1tp (3521W21) + S5, g, (35)
and
210 = (1 (g1e + pW15S55 82) - (36)

Using the above in (35), we now have

X = (p/Cy) (glt + PW/12S2_21g2t) S2_21W21 + Sz_zlg%-

The first term of xo; refers to the direct and indirect effects of the dominant unit, and the
second term relates to the network dependence of the non-dominant units.

Our primary focus is the extent to which shocks to individual units affect aggregate
measures over the network. A standard aggregate measure is cross-section averages of
over ¢t = 1,2,..., N. Here we consider the simple average

N /
_ xu Yo my T+ 1 Xy
TNt = N - N )

but our analysis equally applies to weighted averages, z}y, = Zf\il w;xi, so long as the
weights o, are granular in the sense that w; = O (N~!). Using (35) and (36) we have

21 + 1,855 [pwarzy — by — (1 — p) ey — (1 — p) ¥o f1]
N Y

TNt =

where by = (by, b3, ...,by)" and vy = (74,73, .-, Yn)'- Hence

fN,t = N_l [_an + enxlt - (1 - p) ¢nft - (1 - p) ¢){rz€2t] ) (37)

where a,, = 1/,Sy;by, ¢! =185, 0, = 1 + p@! wo1, and ¢, = ¢/, 7v,. The first term of
(37), N'a,, is bounded in N, since |[Wa| < 1 and p|[Wal|, < 1, and as a result S,,'
will have bounded row and column norms by Lemma A.2 in Appendix A. The second term
captures the effect of the dominant unit. The third term is due to the common factor, f;,
and the final term represents the average effects of the micro productivity shocks. N~'¢,,
is the influence vector associated with the non-dominant units. It is analogous to the
influence vector defined by (8) which applies to all units.

Starting with the final term of (37), we first note that
o*N ¢ ¢, < Var (N7 ear) < "N, (38)

where @/, = (¢, ¢5,...,¢y) is an n x 1 vector of column sums of Sy, and has bounded
elements. Furthermore, since

@, =1, + pl, Wy + p" 1, W5, + ..,

K < oco. Hence,
1< ¢I2nin S N_ld);zd)n S gbfnax < K < o0,
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and N~'¢! ¢, is bounded from below and above by finite non-zero constants. Using this
result in (38) we also have

0> < NVar (N~ '@len) < 677 < 00,

max

which establishes that
Var (N"'¢les) =0 (N7, (39)

where & (N 1) denotes the convergence rate of Var (N~'¢! o) in terms of N, and should
be distinguished from the O (N~!) notation, which provides only an upper bound on
Var (N7l ea).

Next, using (36) we have

Cov (w14, N '@lea) = — (1 — p) p¢i "N 'wi,Hoo 1, (40)
and

Cov (z14, fr) = — (1 —p) (Cfl'h + PCf1h2) Var (f:), (41)
where Hyy = Sy Voo Shy', Voo = diag (02,0%,...,0%), and hy = W},S55~,. It then

follows that overall (recalling that f; and €;; are independently distributed), we have

Var (Tyy) = N_Q(‘)iVar (1) —2(1—p) N720,,Cov (1, @l ED)
+(1—p)’ N2Var (phex) + (1 — p)> N2, Var (f,), (42)

where
Xn = U + 20,0001 71 + 200,00C7 B
Also, using (36) we have

Var (z) = (72 (1= p)* [(71 + 0°h3) Var(fy) + 03] + (7297 (1 = p)* wiyHayway,

which is easily seen to be bounded in N.

A number of results can now be obtained from (42). First, without a common factor
and a dominant unit, Var (Ty,;) = ©(N 1), and the effects of idiosyncratic shocks on Zy
will vanish at the rate of N=1/2, as N — oo. This rate matches the decay rate of shocks in
models without a network structure, namely even if we set W = 0. Therefore, for micro
shocks to have macroeconomic implications there must be at least one dominant unit in
the network. To see this consider now the case where there is no common factor but the
network includes a dominant unit. Then using (39) and (42) we have

Var (Tny) = N 202Var (x1) — 2 (1 — p) N720,Cov (w14, Plea) + O (N71) . (43)

Recall that Var(zy;) is bounded in N and 0, = 1+ p¢/ wo;. Consider the limiting
properties of N~16,. Since

where 1 < ¢, < ¢ < K, then the asymptotic behavior of N7'0,, depends on the
way the outdegree of the dominant unit, namely d;, varies with N. Using the exponent
specification given by (25), d; = k1 N°, it follows that

N_l + gbminp’ilN&l_l < N_lé’n < N_l —+ ¢ pﬁlNél_l,

max
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which leads to
N7'9,=0o(N"1), 0<6, < 1. (45)

Consider now the second term of (43), and note from (40) that
=p)p| \- _ )
|Cov (211, vi€20)| < ‘ | Hwialls (1822 [| o 1Va2ello @0l = O (N7F)
1

since Wiyl = [wizl, = SFawn = 1. [|S5 . < K. [Vasell, = #* < K, and
b0l = Pmax < K. Using the above results in (43) we have

Var (Tyy) = 6(N*'2) + O(N* )+ O (N1,
which simplifies to (since §; < 1)
Var (Tyg) = 0(N*'?)+ O (N7, (46)

and hence
Var (Tn,) = ©(N*172), if §; > 1/2. (47)

This is the main result for the analysis of macro economic implications of micro shocks,
and is more general than the one established by Acemoglu et al. (2012) who only provide
a lower bound on the rate at which aggregate volatility changes with V.

It is also instructive to relate N =10, to the first- and higher-order network connections
discussed in Acemoglu et al. (2012). Expanding the terms of the inverse S,,', N~'6,, can
also be written as

N_lﬁn = ]\/v_1 (]_ + p]_;ng + p21;W22W21 + ,031;ZW§2W21 “+ .. ) s

where N1 pll woy = pN ~1d; represents the effects of the first-order network connections
on Oy, N71p*1! Woywsy, the effects of the second-order network connections and so on.
But in view of (44) and (45) all these higher order interconnections (individually and
together) at most behave as ©(N°1 1),

Therefore, the rate at which unit-specific shocks influence the macro economy depends
on 01, which measures the strength of the dominant unit. But it should be noted from
(46) that to ensure a non-vanishing variance, Var (Tn,) > 0, as N — 0o, we need a value
of 61 = 1. When 1/2 < §; < 1, the network accentuates the diffusion of the idiosyncratic
shocks across the network but does not lead to lasting impacts. No network effects of
unit-specific shocks can be identified when §; < 1/2. Hence, for the dominant unit to
have any impact over and above the standard rates of diversification of micro shocks on
Ty, we need §; > 1/2.7

Consider now networks subject to a common shock but without a dominant unit, and
note that

Var (Tng) = (1— p)? N 292Var (f,) +© (N7,

"The finding that J; cannot be distinguished from zero if §; < 1/2 is also related to the study by
Bailey et al. (2016), who show that the exponent of cross-sectional dependence, a, can only be identified
and consistently estimated for values of o > 1/2.
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and the rate of convergence of Ty, is determined by the strength of the factor as given
by N~2¢2. Recall that 1, = ¢! v, and o (Wy,) < 1, we have

N7l = NS0y, = N1 (1,75 + p1, Warys + 0" 1, Wopys + )

By a similar line of reasoning as before, it is then easily seen that N~ = & (N°™1),
where « is the cross-section exponent of the factor loadings, 7,, and measures the degree to
which the common factor is pervasive in its effects on sector-specific productivity. Finally,
suppose that the production network is subject to a common factor as well as containing
a dominant unit. Then for §; > 1/2 and o > 1/2 we have

Var (Tyg) =6 (N*'7?) + 6 (N*?) + o (N7, (48)

It is clear that the relative importance of the dominant unit and the common factor
depends on the relative magnitudes of §; and a. We need estimates of these exponents
for a further understanding of the relative importance of macro and micro shocks in
business cycle analysis. It is also clear that for the first two terms of (48) to dominate
the third terms we must have 01 = 0,4 > 1/2 and/or o = Qa0 > 1/2.

Allowing for multiple factors and multiple dominant units does not alter the main
results, and the general expression in (48) will continue to apply. The following proposition
summarizes the main theoretical results for the general case.

Proposition 3. Consider the price network represented by (23), where x; = py — wiln
is the log price-wage ratio. Suppose that the network contains m dominant units with
degrees of dominance 6;, 1 =1,2,...,m (m is finite), and is subject to r common factors
with factor loadings having cross-sectional exponents oy, for £ = 1,2,... r (r is finite).
Then macro volatility, defined as the variance of the aggregate measure T, = N~ '1yx,,
has the following order decomposition

Var (Fx,) = © (Nzémax—z) 1o (N2amax—2) Lo (N—l) ’ (49)

where dmax = max(d1,02,...,0y) and Qmax = max (g, g, ..., q,), with the first two
terms having a dominant effects if dmax > 1/2 and/or cumax > 1/2.

6 Estimation and inference

In this section we consider the problem of estimating the degree of dominance of units
in a given network. We consider the power law approach employed in the literature as
well as a new method that we propose when the outdegrees, {d;,ds,...,dy}, follow the
exponent specification defined by (25). It is unclear if a power law specification for the
outdegrees (above a given cut-off value) is necessarily to be preferred to a specification
which relates the outdegrees directly to the size of the network, N, without the need to
specify a cut-off value. The exponent specification of outdegrees has the added advantage
that it also allows identification of more than one dominant units in the network.
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6.1 Power law estimators

Suppose that we have observations on the outdegrees, d;, for i = 1,2,..., N. The power
law estimate of . is given by 1/ B , where B is an estimator of the shape parameter
of the power law distribution fitted to the outdegrees that lie above a given minimum
cut-off value, d;,. A random variable D is said to follow a power law distribution if its
complementary cumulative density function (CCDF) satisfies

Pr(D >d) < d?,

where 3 > 0 is a constant known as the shape parameter of the power law, and o« denotes
asymptotic equivalence.® As the name suggests, the tail of the power law distribution
decays asymptotically at the power of 5. It is readily seen that the probability density

function of D follows fp (d) oc d=¥+1),
A popular specification is the Pareto distribution. Its CCDF is given by

PI' (D 2 d) = (d/dmin)iﬁy d Z dmina

for some shape parameter 5 > 0, and the lower bound d,,;, > 0. The Pareto distribution
has been widely used to study the heavy-tailed phenomena in many fields including eco-
nomics, finance, geology, physics, just to name a few. Since our focus is on the estimation
of the shape parameter 3, in what follows we briefly describe three approaches that are
frequently used in the literature. The first is to run the following log-log regression (also
known as Zipf regression),

Ini=a—Blndy,i=1,2,..., Ny,

where a is a constant, 7 is the rank of the unit ¢ in the sequence {d(;)}, and dyax = d(1) >
diy > ... > d(n,,,, are the largest ordered outdegrees such that dy, ) > dmin, and Ny,
is the number of cut off observations used in the regression. A blas corrected version
of the log-log estimator of /3, is proposed by Gabaix and Ibragimov (2011) who suggest
shifting the rank ¢ by 1/2 and estimating 5 by Ordinary Least Squares (OLS) using the
following regression

n(i—1/2) =a—pFIndy, 1 =1,2,..., Ny (50)

In what follows we consider this log-log estimator and refer to it as the Gabaix-Ibragimov
(GI) estimator, which we denote by (,;. The standard error of 3, is estimated by

o <BG1) =V Q/NminAGI‘

Another often-used estimator of 3 is the maximum likelihood estimator (MLE), de-
noted by 3,15, which is also the well-known Hill estimator (Hill, 1975). It can be easily

verified that? N,
B _ min , 51
MLE E " Indgy — NpinIndn,,,) o

8More generally, power law distributions take the form Pr(D > d) o< L(d)d~?, where L(d) is some
slowly varying function, which satisfies limy_.o L (rd) /L (d) = 1, for any r > 0.
9See, for example, Appendix B of Newman (2005).
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and its standard error is given by & (B ML E) =5 e/ vV Nuin. The ML estimator is most

efficient if d;, is known and the underlying distribution above the cut-off point is Pareto.

Finally, some researchers, notably Clauset, Shalzi and Newman (2009, CSN), have
proposed joint estimation of # and d;,, and recommend estimating d,;, by minimizing
the Kolmogorov-Smirnov or KS statistics, which is the maximum distance between the
empirical cumulative distribution function (CDF') of the sample, S (d), and the CDF of
the reference distribution, F'(d), namely,

Txs = max [S(d) — F (d)|.
Here F' (d) is the CDF of the Pareto distribution that best fits the data for d > dp,;,. The
MLE in (51) is then computed using the estimated value of d,;,. Hereafter, we refer to
this estimator as the feasible maximum likelihood estimator and denote it by Bpgy. "
In the subsequent analysis, we examine how the inverse of [, which is estimated by
the three procedures discussed above, behave as an estimator of ..., and how these
estimators compare to the extremum estimator that we now consider.

6.2 Extremum estimators

Our proposed extremum estimator is motivated by the exponent specification of outde-
grees given by (25). In line with the literature on estimation of 3, we begin with the case
where only a single set of observations on the outdegrees, {d;}, is available, but instead
of the power law specification we assume that d;, + = 1,2,..., N, are generated according
to the following exponent specification:

d; = kN% exp(v;), i =1,2,..., N, (52)
where 0 < 9; < 1, and « > 0 are fixed constants. The above specification is in line with
(25) in Definition 1, where we have set k; = kexp(v;), with {v;, i = 1,2,..., N} repre-

senting the idiosyncratic shocks to the outdegrees. We also note that since by construction
SV, d; =1, then (see also (26))

N
kY N exp(v;) = N. (53)
=1

We make the following assumptions on {v;}.

Assumption 2. The errors {v;, i = 1,2,..., N} have zero means and a constant variance
o2, and there exist finite positive constants Cy and Cy such that for all a > 0,
sup Pr (|v;| > a) < Cyexp (—Cha?). (54)
i
10The code implementing this method can be downloaded from

http://tuvalu.santafe.edu/ ~aaronc/powerlaws//.
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Assumption 3. The errors {v;, i =1,2,...,N} are a stationary sequence of mizing
random variables with exponential mizing coefficients given by n, = ny®, 1y > 0, 0 <
@ < 1, and are cross-sectionally weakly correlated, namely,

N
supz |Cov (v;,v;)] < K. (55)

7 =1
Remark 3. Assumption 2 requires the errors to be sub-Gaussian, which is implied by
condition (54).

Remark 4. Assumption 3 allows for a limited degree of dependence in the errors. The
mizing condition can also be justified using the mixing results established in Jenish and
Prucha (2009) for arrays of random fields. For our application this requires that there ex-
ists an ordering of the outdegrees, {d;}, such that the cross-correlations decline sufficiently
fast along that ordering.

To establish the asymptotic distribution of the extremum estimator, we require a
stronger assumption than Assumption 3.

Assumption 4. Denote the ordered values of d; by 6(;), where dmax = 01y > d2) = ... >
d(ny- Also denote the random variables, v;, associated with 6(; by vy, fori=1,2,... N.
There exists a finite integer m > 0, such that for any a; € R,

Pr(N,vf < a;, ﬁiN:mHUf < a;) =Pr(Nv; < ai)Hf\LmH Pr(v} < a;). (56)

Remark 5. v} is associated with 01y, v5 is associated with 02y, and so on, but note that
vj fori=1,2,...,N need not have the same ordering as 0.

Remark 6. Assumption 4 allows the shocks to the first m largest outdegrees to be de-
pendent on each other, but requires the remaining outdegrees to be independently dis-
tributed. Therefore, it follows that sup; Zjvzl |cov (v;,v;)| = sup, Zjvzl |cov (vr, v7)
sup; Z;n:l ‘cov (Uf, v;‘)‘ < K, for a finite m, and under Assumption 4 condition (55) will
also be met.

Remark 7. It is worth noting that 61y is assumed to be strictly greater than d9), whereas
0y, fori =2,3,...,N, do not need to take different values. This is a key assumption
for identification of 0y associated with the unit with the largest outdegree. The same
argument also applies to 42y and so on.

Now we are ready to introduce the extremum estimator. Taking the log transformation
of (52) we obtain
Ind; =Ink+6InN+wv;, i=1,2,...,N. (57)

Averaging across i yields

N N N
N7 Ind; =Ink+ (Nl Za) N+ N> v (58)
=1 =1 =1
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But from the summability condition (31) of Assumption 1, it follows that

(N‘l ia) InN < K <%) , (59)

i=1
and hence

N
(N_l Z&) InN —0,as N — oo. (60)
i=1
Under Assumptions 2 and 3, the last term of (58) also tends to zero, and Ink can be
estimated by

N
lnﬁ:N_lzlndi. (61)

i=1

An extremum estimator of d,,,, now emerges as

5 e — N SN Ind;  N7USN In (diax/di) (62)
e In N N In N ’

where dy.x is the largest value of d; > 0.

We will next establish the asymptotic properties of the extremum estimator, Omax. TO
this end, we make use of the following proposition that gives the tail probability bounds
for the sum and deviations of the errors.

Proposition 4. (i) Under Assumptions 2 and 4, there exist finite positive constants Cy,
C1,and Cy, that do not depend on N, such that for any a € R,

N
Pr ( Z v;
i=1

(63)

B N2 2
> Na) < Coymexp (—01N2a2> + exp {—02 . )} 5

(N —m

where m 1is the positive finite integer such that (56) holds.
(ii) Under Assumptions 2 and 3, there exist constants Cy,Cy not depending on N, 0 <
Co, Cy < 00, and Cyn,Csy > 0 that are bounded in N, such that for any a € RT,

sup Pr(Jv; — 0| > a) < Cyexp (—C’lNaQ) + Cyexp [—CgNa2/3(N — 1)1/3] , (64)

_ 1N
where v = N~1 Y70 ;.
See Appendix C for a proof.

Remark 8. The second term in (64) is due to © and will not be present if v; is Gaussian
orifv; fori =1,2,..., N is a sequence of independent sub-Gaussian processes. In the
general case considered here the second term plays a crucial role in allowing the errors,
v;, to be weakly cross-correlated.

The following theorem establishes the consistency and asymptotic distribution of Orma-
Its proof is given in Appendix C.
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Theorem 1. Suppose that the outdegrees of a network follow the exponent specification
given by (52). Consider the extremum estimator, dmay, defined by (62).

(i) Under Assumptions 1, 2 and 3, 5max is a consistent estimator of dmax-

(i1) Under Assumptions 1, 2 and 4, for any a € R,

~

(hl N) 5max - 6max *
lim Pr ( ) <a §Pr<ﬁ<a), (65)

N—o0 Oy Ov

where v} is the shock associated with the unit having the largest outdegree and o2 =
Var (vy).
(iii) If vi ~ N (0,02) and o, is known, then a 100 (1 — p) % symmetric confidence interval

for dmax 18 given by [Smax — 2% s Omax + cpm}, where ¢, > @711 — p/2), and @ ()

denotes the cumulative distribution function of the standard normal distribution.

Remark 9. Derivation of the asymptotic distribution of the extremum estimator is based
on Assumption 4 which is stronger than Assumption 3, although it is compatible with it.
The results in Theorem 1 differ from those in the literature on order statistics, since the
distribution of outdegrees differ across i, even if it is assumed that the shocks, v;, are
tdentically distributed.

Remark 10. The above theorem can be applied sequentially to identify units associated
with §2) > 03y > ... > d(m), for a fived a priori given value of m, so long as 6(my > 1/2.
We conjecture that this result follows since we have shown that the most dominant unit
with 6(1) can be identified with probability tending to unity as N — oo, and conditional
on knowing this unit the theorem can then be applied to the rest of the units, and so on.
Howewver, it 1s tmportant to note that our analysis can not distinguish between two units
that are equally dominant, namely if 6y = d;—1) for anyi=1,2,...,m.

It can be seen from (65) that the limiting distribution of 5max depends on the dis-
tribution of vj, i.e., the shock to the largest outdegree. If v} is normally distributed,
or equivalently the largest outdegree follows a log-normal distribution, then the criti-
cal value of the standard normal distribution can be applied in constructing confidence
bounds around 0., assuming o, is known. The confidence bounds on d,,,, also shrink at
the logarithmic rate of 1/ (In N), which could be slow unless N is sufficiently large. Both
of these shortcomings can be overcome in the panel contexts where observations on the
outdegrees are available for more than one time period. In most empirical applications the
focus would be on short 7" panels, due to data availability and also because it is unlikely
that the same unit continues to be dominant over a long time period.

Specifically, consider as before the exponent specification for d;;:

dit:I{N(sieXp<Uit), i=12,....,N;t=1,2,...,T, (66)

where T is finite (T > 1) and N is large. Let 0,0 = T~ ! Zthl Vit, and Oy = N1 ZZ]\LI Vs,
and suppose that Assumptions 2, 3 and 4 hold with v; replaced by v;7. Consider the
estimators

2 T Zle Indy — (TN)il Zthl Z;V:I Indj

dir = NV ,fori=1,2,... N, (67)
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and note that the "panel extremum estimator" of d,., is given by SmaX,T = supi(Sin).
Using (66) we also have

2 <, Vir —UNT
dir—0; =0+ TN (68)

where as before 6 = N~! Zjvzl dj. Consistency of Omax nOW follows by setting &, =
Uyr — Uyt in the proof of Theorem 1 and noting that v;r continues to be sub-Gaussian
so long as vy is sub-Guassian. The distributional results of Theorem 1 also follows with
this difference that under independence of v;; over t, the confidence band for §,,., iS now

given by [(5max,T — pTEE Omax, T + cpif—’]\T]] , where 02 . = Var (U;r), and assuming that the

average shock to the largest outdegree is normally distributed. However, Omax CODtinues
to be consistent even if the errors are non-Gaussian.

To estimate o ; we assume that vy ~ I1D(0,07) and note that in this case o7, =
T~162, and 02 can be estimated by (for T' > 1)

5_2 — 27{\;1 ZZ—’ZI 6121‘/ (69)
CTUNT -1

where 0y = Indy; — Ink — ;1n N, and

k= (N> Ind,. (70)

t=1 i=1

It is now easily seen that under our assumptions, 62 is an asymptotically unbiased esti-
mator of o2 for any fixed T' > 1. To see this note that

vy = Indy—Ink—06;InN (71)
= —<l?17<—1n/{)—(3i—5i>ln]\7+vit.

Now using (70) and (68) yields ¥; = —26In N + vy — D7, and in view of Assumptions 1
and 4 it follows that

Uy = vy — Vir + 0(1),
with v;; being cross-sectionally weakly dependent. Using this result in (69) and taking
expectations, we have (for a fixed T' > 1)

N T _\2
E (62) _ Zi:1 Zt:1 E (Uit - UiT)

N (T—1) +0o(1) = o2 + o(1),

which establishes the desired result.
A test of the null hypothesis that dpmax = 00, can now be based on the statistic

max

(0N (G — )

50 (7~ 7v) "

: (72)
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which will be normally distributed if 0}, ~ N (0,02), where v}, is the time average of
the shocks to the most dominant unit, the unit with the largest outdegree. But one
would expect that the normality assumption becomes less critical for large (but finite)
values of T'. This is because for T sufficiently large, v/To%, is likely to be approximately
normally distributed under some standard regularity conditions on vj,, fort =1,2,... 7.
However, it is important that 7" is not too large relative N, otherwise the distribution of
5maX7T could depend on the nuisance parameter, 6. To avoid such a possibility we must
have

5(1nN)ﬁz<Z§i>W—>O, as N — oo. (73)

Under the summability condition (31) of Assumption 1, this requires that W — 0,

as N and T — oo, jointly. A full treatment of the case where both N and T — oo is
outside the scope of the present paper and is not considered as empirically relevant since
in most network applications 7T is likely to be small relative to N.

6.3 Comparison of power law and extremum estimators

The exponent specification has the advantage that it is closely related to (25) in that
ki = kexp(v;) > 0, and is in line with the production network model derived from a set
of underlying economic relations. Nonetheless, in practice it is difficult to know if the
true data generating process follows the exponent or a power law specification. But it
turns out that 1/ dmax 1S & consistent estimator of 3, the shape parameter of the Pareto
distribution, even under the Pareto distribution.

To see this, suppose that the observations on the outdegrees, d;, for i = 1,2,... N,
are independent draws from the following mixed-Pareto distribution

f(dZ) X di_l_ﬂv 1f dz Z dmin; (74)
o Y(d;), if di < duin,

where d; > 0 follows a Pareto distribution with the shape parameter § for values of d;
above dpn, and an arbitrary non-Pareto distribution, 1(d;;), for values of d; below dp;y.
The constants of the proportionality for both branches of the distribution are set to ensure
that fooo f(z)dz = 1, and that a given non-zero proportion of the observations fall above

min -

A

Using (62), the extremum estimator, 0., can be rewritten as

< Zmax N_l va— Z4
6max = In N —! ) (75)

where z; = In(d; /dmin), for all 7, and z(;) = In(d(;)/dmin), with d(; being the i" largest value
of d; as before. Since d;, is a given constant and by assumption d; are independently
distributed, it then follows that for z; > 0, z; are independent draws from an exponential
distribution with parameter 3, namely

fz(2) = Be P% for z > 0,
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with E (z]|z >0) = 1/8, and Var (z]z > 0) = 1/5?, for § > 0.!' We also assume that
E (2i |z < 0) exists, which is a mild moment condition imposed on (d;) for In (d; /dmin) <
0. The following theorem summarizes the consistency property of 0., as an estimator of

1/8.

Theorem 2. Suppose that the outdegrees d;, for i = 1,2,..., N, are independent draws
from the Pareto tail distribution given by (74) with the shape parameter 3 > 0, and assume
that z; = In(d;/dwmin) has finite second order moments for all values of z; < 0. It then
follows that

z\}i_rgoE <3max> =1/p8, and Var <3max) =0 [(lni\ff] , (76)

where Oy 18 defined by (75).
A proof is provided in Appendix C.

Remark 11. The convergence of Omax to 6 = 1/8, is at the rate of 1/ (In N) which is
rather slow. But it is obtained without making any assumptions about dy;, and/or the
shape of 1(d), the non-Pareto part of the distribution.

As compared to the power law estimators, the extremum estimator has several advan-
tages. First, it does not require knowing the true value of d,,;,, whereas the estimates of
the shape parameter may be highly sensitive to the choice of the cut-off value. Although
procedures such as the feasible MLE proposed by Clauset et al. (2009) estimate dp,
jointly with 3, such estimates assume that the true distribution below and above d,;, are
known, whilst the extremum estimator is robust to any distributional assumptions below
dimin, SO long as In(d;/dmi) has second order moments. Granted that it may not be as
efficient as MLE if the true distribution is indeed Pareto, one does not need to make such
strong assumptions on the entire distribution. Third, the extremum estimator allows for
possible dependence across the largest outdegrees, whilst the power law estimators assume
that outdegrees are independent draws from a Pareto distribution.

7 Monte Carlo experiments

In this section, we investigate the small sample properties of the proposed extremum
estimator for balanced panels using Monte Carlo (MC) techniques, and compare its per-
formance with that of the power law method.'?

We consider two types of data generating processes (DGPs) for the outdegrees (d;;):
an exponent specification and a power law specification. The DGP for the exponent
specification is given by

Indy; =Ink+6;InN+vy, i=1,2,...,N; t=1,2,...,T, (77)

1Tt is worth noting that z has moments even if 3 < 1, although the Pareto distribution has moments
only for g > 1.

12Gmall sample properties of the extremum estimator for unbalanced panels are investigated in the
online supplement.
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where v;; are weakly cross-sectionally dependent and generated as
N
Vi = 1 Z Wy,ijVjt + Eit, (78)
j=1

or in stacked form,
vy = YW, + &,

where Uy = (Ulta UVoty .- - 7UNt)/ , €t = (€1t, Eoyn v ,éth)/, Eit ™ IIDN (07 1), and WU =
(Wo,i) v« v 15 the 1-ahead-and-1-behind circular weights matrix:

0 53 0 >
%?%'1'0

w,=| 05 0 35 0 (79)
3 0 3 0

The strength of cross-sectional dependence is set to 1) = 0.5.'3 To ensure that d;; add up
to N across ¢ for each t, k is set to
0_2
o )

K= —cxy - >0, (80)
N=1Y L N

where 02 = Var (vy), which equals the diagonal element of Var (v;) = RR/, where
R=(Iy—yW,) "

For the power law model we closely follow Clauset et al. (2009), and initially generate
yix as random draws from the following mixture distribution that obeys an exact Pareto
distribution above ymin and an exponential distribution below ymin ¢

Ct(yit/ymin,t)i(ﬁJrl% fOI' Yit Z ymin,t
S (i) = : (81)
Cte_(ﬂ—‘_l)(y“/ymin't_l)a fOI' Yit < Ymin,t

fori=1,2,...,N,and t = 1,2,...,T. To ensure that f(y;) integrates to 1 over its full
support, y;; > 0, we set C; as

. A+l _ 1
Ct _ Ymin,t (6 )

-1
ymin,t
T 75 ] : (82)

We then set di; = yi /U and diint = Ymint/Ji, Where g, = N1 Zfil Y, which ensure that
the outdegrees add up to N. It is worth noting that under this DGP

1/eP—1 1\!
Pr (dz‘t > dmin,t) = Pr (yz’t > ymin,t) = B (W + B) s (83)

13We have considered various intensities of cross-sectional dependence: 1 = 0.2, 0.5 and 0.75, as well
as independent errors. A full set of results are presented in the online supplement.
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which is time-invariant and depends only on the value of 3.!* The inverse transformation
sampling method is used to generate y;; such that its distribution satisfies (81). To this
end we first generate u;; as [IDU[0,1],i=1,2,...,N;t=1,2,...,T, and set

Umin,t = Ct (%) (e’8+1 — 1) , (84)

and then generate y;; as

( min 1 3
_ Ymin,t In [1 (B + >ut}, if wi < Uminy

B + 1 a CteﬁJrlymin,t
Yit = 1 : (85)
6 (umin,t - uit) + Ctymin,t f
B+1 y 1 U 2 Umin,t
L Ctymin,t

We carry out two sets of experiments based on the above two DGPs:

Exponent DGP: Observations on d;; are generated according to the exponent speci-
fication, (77), with a finite number of dominant units and a large number of non-dominant
units. Specifically

~

=0fori=23,...,N. In

e Al. One dominant unit: dmax = 61y > 0, and 3
) Omax = 0.95; (iii) Omax = 0.85;

)
particular, we consider four cases: (i) dmax = 1; (ii
and (iv) dpmax = 0.75.

=%

e A.2. Two dominant units: dmax = d(1) > 0, d(2) >0, and ;) = 0 for i = 3,4,..., N.
We consider 01y = 0.95 and §(5) = 0.85."

We consider all combinations of N = 100, 300, 500, and 1,000, and T' = 1,2, 6, 10, and
20, and also provide simulation results for a very large data set with N = 450, 000, which
can arise when using inter-firm level sales data.'® We focus on the 5 largest estimates of
9, which we denote by Sma&T = 3(1),T > 5(2)7T > > 5(5)1, computed according to (67).
When T > 1, the test statistic is computed following (72), where 62 is given by (69).

Pareto DGP: Observations on d;; are generated according to the mixture Pareto
distribution, (81), described above and we consider Experiments B.1: § = 1.0, and B.2:
B = 1.3.17 The values of Ymin,t are set as Ymint = Ymin = 15. The sample sizes are
combinations of N = 100, 300, 500, 1,000, and 450,000, and 7" = 1 and 2. We assess
the performance of the Gabaix-Ibragimov estimator (o;) given by (50) for different
given cut-off values, dmin ¢, the maximum likelihood estimator (3, ;) given by (51) for

M“When T > 1, we construct a panel data assuming that all units maintain their relative dominance
over time, and therefore for each ¢ we sort d;; in a descending order.

15We have also considered other values of d¢1) and d(gy for Experiment A.2, including ;) = 0.95,
d(2) = 0.75; and (1) = 0.85, §(2) = 0.75. These results are provided in the online supplement.

6 For example, Carvalho et al. (2016) use a subset of data compiled by Tokyo Shoko Research Ltd that
contains information on inter-firm transactions of around one million firms across Japan. This data set
is proprietary and has not been made available to us.

1"We have also considered 3 = 1.1 and 1.2. The results are given in the online supplement.
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different dyyin,¢, and the CSN estimator (Bcs ~) which estimates ( jointly with the cut-off
value.

As shown in Theorem 2, the inverse of the extremum estimator, 1/ 5max, is a consistent
estimator of 3, and analogously one can consider the inverse of 3 as an estimator dpmax.'®
It is therefore of interest to see how the extremum estimator performs under the Pareto
DGP, and conversely how the power law estimators perform under the Exponent DGP. To
investigate the robustness of the alternative estimators of 5 to the choice of the underlying
distribution, we conduct two sets of misspecification experiments where we compare the
small sample properties of the four estimators of 3, namely BG I B MLE> Bcs ~, and Bmax =
1/ Sma&T, when the underlying DGP is Pareto, and conversely when Exponent DGP is
used. We consider the values of 5 = 1, and 1.3 under Pareto DGP, and d,,,x = 1 and
1/1.3 ~ 0.77 under Exponent DGP. We focus on small values of 7' = 1 and 2, for all
combinations of N = 100, 300, 500, 1, 000, and 450, 000.

All experiments are carried out with 2,000 replications.”

MC results The estimation results under Exponent DGP for Experiment A are
summarized in Table 1, and focus on the extremum estimator of dp.x = 0(1) and d(y)
when applicable. For each experiment we report bias (x100), root mean squared error
(RMSEx100), as well as size (x100) and power (x100) for the estimators under con-
sideration. We first note that the bias and RMSE of the extremum estimator decline
as N and/or T rises. The bias and RMSE reduction is particularly pronounced as T
is increased. This is in line with the theoretical derivations which establish that along
the cross-sectional dimension the rate of convergence is of order 1/ (In V), as compared
to T77'/2 along the time dimension. We also note that the empirical sizes of the tests
based on 5maX,T and 8(2),T are close to the assumed 5% nominal size in most cases. It is
particularly satisfying to note that the extremum estimator has satisfactory performance
even when N approaches 450,000. The slow rate of convergence along the cross section
dimension is, however, important for the power of the test. For example, in the case of
Experiment A.1, the power of detecting the strongly dominant unit (against the alterna-
tive that dyay = 0.8) is around 17.05% for N = 100 and T' = 2, and rises only slowly as N
is increased. However, we see a significant rise in power if 7" is increased to 6. For T' = 6
the power rises from 41% for N = 100 to 99.9% for N = 450,000, more than twice the
values obtained for T' = 2.

We also consider the frequency with which the dominant unit is correctly selected
under Exponent DGP for Experiment A.1. The results are summarized in Table 2, and
show that the dominant unit is almost always correctly selected, especially when 7' > 2.
The frequency of correct selection can be low in the case where 0, = 0.75 and T = 1,
but it increases substantially when 7" > 2 even if N = 100.

Tables 3 and 4 summarize the results for the first set of misspecification experiments
where the data are generated from the Pareto tail distribution given by (74). For different
values of 3, the extremum estimator demonstrates robustness to the model misspecifica-
tion, although it converges to the true value much more slowly than the other shape

18Gee also the discussions at the end of Section 4 on the relationship between dmay and 3.
19We have also investigated the small sample properties of the extremum estimator of d,.x for expo-
nentially decaying ¢;’s and for unbalanced panels. The results are provided in the online supplement.
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estimators under Pareto type distributions. This finding is in line with our theoretical
results provided in 6.3. The extremum estimator, ﬁmax 1/ Omax ., performs well particu-
larly when = 1, even when N is relatively small. For example, under Pareto DGP with
=1 (Experlment B.1), for N = 300 and T' = 2, f3,,,, = 1.01 (0.05), while 3, = 1.04
(0.19) and (3, = 1.05 (0.14), assuming a 10% cut-off value.” Tt is also worth noting
that the Gabaix-Ibragimov estimator (8.;) and the ML estimator (3,,; ;) are quite sen-
sitive to the choice of the cut-off values.?! The feasible MLE, ﬁcs ~, performs better, but
it is important to note that the validity of the feasible MLE procedure critically depends
on how close the assumed specification of the distribution of d;; below dyin: is to the true
underlying distribution.

Consider now the case where the outdegrees are generated according to the exponent
specification, (77). In this misspecified case the Pareto estimators, BG I fi vLe, and Bcs N
all show significant biases (see Tables 5 and 6). For instance, when 5 =1, N = 300 and
T = 2, and the outdegrees are generated according to the Exponent DGP, the bias of
BGI ranges from 0.10 to 0.35, for the cut-off values 10% to 30%. Also, the bias of BGI
increases rapidly with N. The ML type estimators exhibit similar biases.

Finally, the extremum estimator continues to perform well in the case of unbalanced
panels, and large N and 7" panels with heteroskedastic and serially correlated errors. It is
also reasonably robust to alternative network structures under different specifications of
the distribution of outdegrees, such as exponentially decaying 9;’s. The relevant summary
tables are available in the online supplement.

8 Dominant units in US production networks

In this section we apply the proposed estimation strategy to identify the top five most
pervasive (dominant) sectors in the US economy. We also compare our results with the
estimates of [ (the inverse of d..x) obtained by Acemoglu et al. (2012) for the most
dominant sector. We provide estimates based on the US input-output tables for single
years as well as when two or more input-output tables are pooled in an unbalanced panel.
Acemoglu et al. (2012) only consider the estimates of 5 based on single-year input-output
tables.

We begin with a re-examination of the data set used by Acemoglu et al. (2012) so that
we have a direct comparison of the estimates of 5 (or its inverse) based on the shape of the

power law, and the extremum estimator which is given by (ASmaX,T = sup;, (81’71), and (ASM’

is computed using (67). The Acemoglu et al. (2012) data set is based on the US input-
output accounts data over the period 1972-2002 compiled by the Bureau of Economic
Analysis (BEA) every five years. We first confirmed that we can replicate their estimates
of 8, which we denote by BG ; assuming a 20% cut-off value (the percentage above which
the degree sequences are assumed to follow the Pareto distribution). The estimates Omax
and the inverse ofB for the years 1972, 1977, 1982, 1987, 1992, 1997 and 2002 are given
in Tables 7 and 8. For the inverse of B , Tables 7 and 8 report estimates based on the

20Figures in brackets are standard errors.
21Similar Monte Carlo evidence illustrating the truncation sensitivity problem is reported in Table 1-4
of Gabaix and Ibragimov (2011). An interesting theoretical discussion can be found in Eeckhout (2004).

28



first-order and second-order interconnections, respectively.?> We estimate 3 by the three
approaches discussed above, namely Gabaix-Ibragimov estimator (Bap) given by (50), the
MLE (3,,.5) given by (51) and the feasible MLE (3.gy). For the Gabaix-Ibragimov
regression and MLE, we give estimates for the cut-off values of 10%, 20%, and 30%. For
the feasible MLE, we present both the estimates of 3 and the estimated cut-off values.??

The results in Tables 7 and 8 show that the yearly estimates of 0., are clustered
within the narrow range of 0.77 to 0.82, covering a relatively long period of 30 years. We
can not provide standard errors for such yearly estimates, but given the small over-time
variations in these estimates we can confidently conclude that there is a high degree of
sectoral pervasiveness in the US economy, although these estimates do not support the
presence of a strongly dominant unit which requires dmax to be close to unity. In contrast,
the estimates of 0.« based on the inverse of B differ considerably depending on the
estimation methods, the choice of the cut-off value, and whether the first- or second-order
interconnections are considered. For example, for 1972, the estimates based on the power
law, inverse of BGI, range from 0.694 when the cut-off value is 10% and the first-order
interconnections are used, and rise to 1.035 when the second-order interconnections are
used with a 30% cut-off value. The estimates of § based on the inverses of (3, and
3 v LE, Tise with the choice of cut-off values and with the order of interconnections, whilst
our estimator does not require making such choices. Recall that 0., provides an exact
measure of the rate at which the variance of aggregate output responds to sectoral shocks,
whilst S characterizes a lower bound if the first-order interconnections are used. A 20%
cut-off value, which is assumed by Acemoglu et al. (2012) seems reasonable, considering
the closeness between the estimates of (5max and the inverse of 5 a1, and given its similarity
to the estimated cut-off values by the feasible MLE. Nevertheless, the estimated cut-off
value based on the first-order interconnections for the year 1992 is only 9.5%, which is
markedly lower than that for the other years. Similar issues arise when the second-order
interconnections are used. The differences between & max and inverse of B 1 also vary across
the years. For example, using the second-order interconnections and a cut-off value of
20%, dmax and inverse of 5(} ; are reasonably close for the years 1992, 1997 and 2002, but
diverge for the earlier years of 1972, 1977 and 1982.

The data set provided by Acemoglu et al. (2012) does not give the identities of the sec-
tors, which is fine if one is only interested in § or d .. But, as noted earlier, our estimation
approach also allows us to identify the sectors with the highest degrees of pervasiveness in
the production network. With this in mind, we compiled our own W matrices from the
input-output tables downloaded from the BEA website.?* The W matrices for different
years were computed from commodity-by-commodity direct requirements tables at the
most detailed level that cover around 400-500 US industries. The (i, j)!* entry of such a

?2The first-order degree of sector j is just its outdegree, d;, defined as before, while the second-order
degree of sector j is defined by d;» = d'w.; , where d = (d1, da, ..., dn)’ is the vector of first-order degrees
and w.; is the j** column of W.

23 Acemoglu et al. (2012) estimated the shape parameter of the power law by the log-log regression
and non-parametric Nadaraya-Watson regression, taking the tail to correspond to the top 20% of the
samples for each year and did not try other cut-off values. They also estimated the shape parameter
by the feasible maximum likelihood method proposed by Clauset et al. (2009), but did not report the
estimates for each year or the estimated cut-off values.

24The input-output accounts data are available at http://www.bea.gov/industry/io_annual.htm.
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table shows the expenditure on commodity j per dollar of production of commodity 7.2
These direct requirements tables can be derived from the total requirement tables at the
detailed level, which are compiled by the BEA every five years.?’

The top five largest estimates of §, denoted by 3max = 3(1) > 3(2) > .0 > 3(5), for each
of the years 1972 to 2007 are given in Table 9. The identities of the associated sectors
are given in Table 10. We note that both the degrees of dominance and the identities of
the pervasive sectors in the US economy are relatively stable over the years. Consistent
with the results in Table 7, no sector is strongly dominant. The highest estimate of d .y
is 0.82, for the year 1992, with an average estimate of around 0.78 over the sample. The
wholesale trade sector turns out to be the most dominant sector for all the years with
the exception of 2002. In this year the management of companies and enterprises is the
most dominant sector with the wholesale trade coming second. It seems reasonable that
wholesale trade plays the dominant role given the importance of transportation linking
up the different sectors of the economy, providing intermediate goods and transporting
final goods to retail sectors.?”

But it is generally difficult to distinguish between the top two or three sectors as their
0 estimates are quite close to one another and we are not able to apply formal statistical
tests to their differences as standard errors can not be computed using outdegrees for
one single year.”® Accordingly, to provide more reliable estimates of d(1y, d(2),...,d()
and the associated sectoral identities, we also consider pooled estimates. However, there
have been major changes in the BEA industry classifications over the years, with the
input-output tables for the period 1972-1992 being based on the Standard Industrial
Classification (SIC) system, while starting from 1997 they are based on the North Amer-
ican Industry Classification System (NAICS). Accordingly, we compute panel estimates
of § for the two sub-samples separately.?? The results are summarized in Table 11, which
also gives standard errors in parentheses. It is interesting that despite changes to the sec-
toral classifications, the wholesale trade sector is identified as the most dominant sector in
both sub-samples, With dmayr = 0.762 (0.036) for the first sub-sample (1972-1992), and
Omax.s = 0.716 (0.045) for the second sub-sample (1997-2007). The two panel estimates
are quite close and identify wholesale trade as the most dominant sector in the US econ-
omy. Turning to the estimates of d(2), d(3),...,0d(5), we find that these estimates are also
remarkably similar across the two sub-samples, ranging from 0.667 to 0.605 in the first

25 As in Acemoglu et al. (2012), the terms sector and commodity are used interchangeably to convey
the same meaning,.

26The Commodity-by-Commodity Direct Requirements (DR) table is derived by: DR =
(TR -1) (TR)fl, where I is an identity matrix, and TR denotes the Commodity-by-Commodity Total
Requirements table. Then W is set to the transpose of DR and row-standardized so that the intermedi-
ate input shares sum to one for each sector. The sectors without any direct requirements and those with
zero outdegrees are excluded from W.

2TThe wholesale trade sector is also found to be dominant in other economies. Dungey and Volkov
(2018) apply our extremum estimator to 49 OECD countries and find that in over half of them wholesale
trade is in fact the dominant sector.

28 Acemoglu et al. (2012) are able to compute standard errors for their estimates of 3 because they
impose a Pareto distribution on the ordered outdegrees beyond a cut-off point, which they take as given.

29The estimates are computed with unbalanced panels. See Section S2 of the online supplement for an
extension of the extremum estimator to unbalanced panels.
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sub-sample, and 0.683 to 0.595 in the second sub-sample. What has changed is the iden-
tity of the sectors across the two sub-samples. For example, the second most dominant
sector has been blast furnaces and steel mills over the first sub-sample (1972-1992), whilst
it is management companies and enterprises over the second sub-sample (1997-2007).

9 Concluding remarks

This paper extends the production network considered by Acemoglu et al. (2012) and de-
rives a dual price network, which allows us to obtain exact conditions under which sectoral
shocks can have aggregate effects. The paper presents a simple nonparametric estimator
of the degree of pervasiveness of sectoral shocks that compares favorably with the para-
metric estimators based on Pareto distribution fitted to the outdegrees. The proposed
extremum estimator is simple to implement and is applicable not only to the pure cross
section models where the Pareto shape parameter is estimated, but also extends readily
to short T" panels. The paper also develops a simple test of the degree of pervasiveness
of the most dominant units in the network, which is shown to have satisfactory size and
power properties when N is large, even if T' is quite small. The production and price
networks considered in this paper are static, but the proposed statistical framework can
be extended to allow for dynamics, along similar lines as in Pesaran and Chudik (2014)
who consider aggregation of large dynamic panels.

Our empirical application to US input-output tables suggests some evidence of sector-
specific shock propagation, but such effects do not seem sufficiently strong and long-
lasting, and are likely to be dominated by common technological effects. Similar empirical
evidence are also provided by Foerster, Sarte, and Watson (2011), who incorporate sectoral
linkages into multisector growth models producing an approximate factor model. Their
factor analytic approach, however, cannot distinguish dominant unit(s) from common
factors and therefore may underestimate the influence of input-output linkages.® The
issue of the relative importance of internal network interactions and external common
shocks for macro economic fluctuations continues to be an open empirical question.

A Appendix: Lemmas

Lemma A.1. Let A be an N x N matriz whose entries are non-negative and each row sums up
to 1. Then A\ (A) = 1, where A1 (A) is the largest eigenvalue of A, and In — pA is invertible
given that |p| < 1.

Proof. Matrix A is as a right stochastic matrix, and A\; (A) = 1 follows. See, for example,
Property 10.1.2 in Stewart (2009). Given that |p| < 1 and A1 (A) = 1, it then readily seen that
all eigenvalues of Iy — pA are strictly positive in absolute value, and hence invertible. ]

Remark A.1l. [t should be noted that this lemma holds irrespective of whether A has bounded
column matriz norm. Also note that Ay (A’) =1 and Iy — pA’ is invertible, since a matriz and
its transpose always have the same set of eigenvalues.

30The factor analysis also requires large N and 7T panels and is not applicable when 7" is small.
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Lemma A.2. Let A be an N x N matriz and B = Iy — pA. Suppose that
|l <max (1/[|All, 1/ [|A]ly)-

Then B~ has bounded row and column sum matriz norms.

Proof. See Pesaran (2015, p.756). O

B Appendix: Multiple dominant units

This appendix extends the analysis of Section 5 to the scenario where there are more than one
dominant unit in the network. Specifically, we assume that the first m units are dominant with

degrees of dominance {d1,02,...,d,,}, and the rest n units are non-dominant, with §; = 0, for
t=m+1m+2,...,m+n,and let N =m+n. Consider now the following partitioned version
of model (23),
<X1t>_<PW11 pW12>(X1t>+<g1t>
xu )\ pWa1 pWa Xoy g )’

where x1t = (z1t,Tot, - s Tmt)s X2t = (Temt1,t Tmt2t, - - - TNe)', Wip is the m x m weight
matrix associated with the dominant units, Wyg is the n x n weight matrix associated with
the non-dominant units and assumed to satisfy |p|[|[Wazll; < 1, and g1z = (91¢, 92t - - - » Gmt)’,
g2t = (Gm+14> Gm+2,ts---,9nNt), where giy = —bi — (L — p) (v;fe +€i), for i = 1,2,...,N. As

0(Wa2) <1 and |p| < 1, we have
X2t = Sop (PWarxys + g2:) (B.1)
where Sgo = I,, — pWaa. Substituting (B.1) into
x1t = pWnxy + pWiaxa + 811,

and rearranging yields
xit = Zy g1t + pZy Wi2S5, 8o, (B.2)

where

Z1 =1, — pWi1 — p*W12S5, Woy,

and Z; is invertible as (Iy — pW) is nonsingular by Lemma A.1 in Appendix A.
Now consider the cross-section average of x; for: =1,2,..., N,

e = N1 (1), %1 + 1 x0) - (B.3)
Using (B.1) in (B.3) gives
Xy = N1 (1), + p1;S2_21W21) X1t + 1252_21g2t] )
and by the definition of g1; we obtain
Xy =N""[—an+0,x1 — (1= p) ¥, fr — (1= p) Preai] ,
where a,, = 1/,S55 b2, 0!, = 1/ +p¢p), Wa1, ¥, = ¢ va, @), = 1,S55, with by = (bpyi1, bms2, - - -, bN)’

and v, = (7m+17’7m+27 cee 77N),'
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We will derive Var(Xy¢) and inspect its asymptotic order of magnitude as N — oo following
similar steps as in Section 5. First, as with the case of one dominant unit, we have 1 < ¢, ;;, <

¢max <K< 00, where ¢fn = (¢m+17 ¢m+2a EE) ¢N)v d)min = min(¢m+1> ¢m+2a HE) ¢N)v and
Prmax = Max(dp, 41, Prpas - - -, O ). Also, it readily follows that a, = O(1) and Var (N~ '¢,e9) =
© (N _1) . Consider now the terms due to the dominant units. Using (B.2) we have

Cov (x14, N ' pliear) = Cov (Z7 gt + pZ7 "W12S55 8o, N~ €2)
= —N""p(1—p) Z7"'W1585) V.85, 1,
Cov (xuy, fr) = — (L= p) Var(fi) (Z7'v1 + pZ7 " W12S3571)
Var (xi) = (1-p)?Z7' Vi Z7 + (1 - p)? p° 27 ' W12S5, Vg .85, Wi, Z
+ (1= p)*Var(fy) (Zy' i 20 + 0721  Wi2S5, 727585 Wi Zi )
where Vi1 . = diag (a%, a%, e ,J?n) , Voo . = diag (072n+1’ 0'72”+2, e a%\,), and vy = (Y1, Y9s - s Von) -

Turning to the individual terms of Var(Xy¢), which is given by

Var (Xyt) = N720,Var(x1:)0, —2 (1 — p) N20,,Cov (x11, Pplea) + (1 — p)? N 2Var (¢re2t)
+ (1= p)? N2Var(fy) (7 + 20,0, 27 71 + 20,0, Z7 " W1aS5y,) -

In the case where the network contains m dominant units but is not subject to common shocks,
Var (Xnt) = N 20, Var(x1:)0, — 2 (1 — p) N720,,Cov (x11, ¢lea) + S(N ).

Consider the i*" element of N~10,,, denoted by N—lem, for:=1,2,...,m, and note that m is
fixed and does not rise with N. Then by definition, N*19m: N1 (1 + qu;w.i,gl) , where w.; 21
is the " column of Wy;. Hence

n n
-1 —1 4/ -1
GminN g wji21 < N7 W01 < Qo NV E Wji,215

Jj=1 j=1
and
n n
N7t i N Z wjiz1 S N i SN+ G N1 Z Wji,21- (B.4)
J=1 j=1

Also note that w/; 5,1, = S(N %), which immediately follows that

’ ’ 85
W.ioiln + W, 111y = d; = KN,

with m being fixed. Therefore, by (B.4) it follows that N~16;,, = ©(N%~1), fori =1,2,...,m,
and then N—260..0,, = @(N%maxd), where 0 < dpax = max (41,92, ...,0,,) < 1. Further notice
that

N_20;19n)\m [Var(xy)] < N_29%Va7“(x1t)0n < N_29;L0n)\1 [Var(xi)],

where A1 [Var(xi)] and A\, [Var(xi:)] denote the largest and smallest eigenvalue of Var(xy;),
respectively, and 0 < A, [Var(xi:)] < A1 [Var(x1:)] < K < co. Hence we obtain

N720)Var(x1;)0, = © (N%ma"_2> .
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Turning now to the j* element of the covariance term, for j = 1,2, ..., m, we have
[Cov (e, N7 o) | < N7 o (1= p)l 274 IWazlloo 1S3 e Va2l 10l

where Z denotes the j* row of Z1 , and usmg sunllar line of reasoning as in the main text
it is easﬂy verified that ‘Cov (l‘jt, l(bnsgt)‘ = 1) , and therefore

N726,,Cov (x11, ) = O (NP2
Consequently, in the absence of common shocks, we have demonstrated that
VCLT (iNt) = @ <N25max—2) + @ (N—l) ,

which clearly shows that the rate of convergence of X depends on the strongest dominant unit
in the network.

Finally, if the network is subject to both dominant units and a common factor, using
N1, = ©(N*1) and similar arguments as before leads to

VCLT (iNt) -0 (N26max—2) + 0O (NQOZ—Q) +o (N—l) 7
which is a direct extension of (48) to the multiple-dominant-units network. It is easily seen

that when there are multiple factors and multiple dominant units, (49) in Proposition 3 readily
follows.

C Appendix: Mathematical proofs

C.1 Proof of Proposition 4
We begin by proving (i). By the triangle inequality,

m N
oo ] 2 vis
i=1 i=m+1
and it follows that for any ay € RT,
N m N
r(ZUi>aN)<Pr< va >aN>.
i=1 i=1 i=m+1

By Lemma A11 in the supplement to Chudik et al. (2018), there exists a constant 7 in the range
0 < 7 < 1, such that

N m N
r<2vi >aN>§Pr<ZU;‘ >7TCLN)—|—PI"< Z v; >(1—7T)aN). (C.1)
i=1 i=1 t=m-+1

Consider the first term on the right-hand side of (C.1). Applying Lemma A11 of Chudik et al.
(2018) again gives
m
r (

*
> vi

=1

m
> 7['CLN> < ZPr(!vf\ > mman),
i=1
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where m; are any constants satisfying 0 < m; < 1 and 221 m; = 1. By the sub-Gaussian
condition (54) of Assumption 2, we have

Pr (jvf| > miman) < Coexp (—Cimin’ay),
fori=1,2,...,m, and hence
m m
Pr ( ) < COZexp —Cimir*ayy) < Comexp (—Crimammiayy) (C.2)
i=1 i
where Ty, = min (71, 72,...,7y). Consider now the second term on the right-hand side of

(C.1). Note that {v;}, i =m+1,m+2,..., N, are independently distributed under Assumption
4; they have zero means, variance o2, and are sub-Gaussian under Assumption 2. Therefore,

Lemma A3 of Chudik et al. (2018) is applicable,>' and we have

N (11— 7r)2 a?
Pr [ Z vi| > (1—m) aN] < exp [202(]\7—m];1 , (C.3)
i=m-+1 v

where ¢ is any constant in the range 0 < ¢ < 1. Overall, using (C.2) and (C.3) in (C.1) and
letting ay = Na, a > 0, we obtain

(2

D vi

P 202 (N —m)

> Na) < Comexp (—C’mfninszQQQ) + exp

A2(1—m)? N2a2]

Setting C = Cy72, 72, Cy = (-m’ Tr) and recalling that m is finite leads to

min” 202

r (
as required.
We now turn to proving (ii). Let ; = v; — 0 and note that

E=01-N ' IZUJ

J#i

N

S

N2a2
|\
i=1

(N —m)

> Na) < Comexp (—C~'1N2a2) + exp |:—02

By the triangle inequality |¢;] < (1 — N71) Ju;| + N1 )Z#i Uj’, and hence for any a € RT,

Pr(] > ) < Pr |(L— N o+ N1 |3 | > a
J#i

By Lemma A11 in the supplement to Chudik et al. (2018), there exists a constant 7 in the range
0 < w < 1, such that

N
Pr(|g]>a) <Pr[(1—N"Yv| > (1 —ma] +Pr (N> vy >ma].  (C4)
J#i

31Lemma A3 of Chudik et al. (2018) provides a more general result on the tail bound for martingale
difference sequence.
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But by the sub-Gaussian condition (54) of Assumption 2, we have

N2(1 — 7)2%a?

Pr((1= N Yol > (- ma] < Cooxp | -Ca™ (2T

Consider now the second term of (C.4) and note that

N N
Pr| Nt Zvj >ma | =Pr Zvj > Nma
J#i JFi

Under Assumption 3, Theorem 3.5 of White and Wooldridge (1991) can be applied to obtain
(for choice of p =2 and A =1 in their notations)

N 2/3
Pr Zvj > Nma | < OQGXP{-C?, [Nﬂ'a(N—l)fl/ﬂ /}

i
N \?? ,

—Cy | —— BN —1)Y/3

C3<N—1) TN =T

for some finite positive constants Cs and C3. Hence

= 02 exp

N2(1 — 7)2%a?
(N —1)2

Pr([¢;] > a) < Coexp [01 } + Cyexp

N \??
_ /3 _ 1\1/3
Cs < — 1) a?3(N —1)V3].

3 2/3
Setting C1ny = %, Csny = (3 <%) , and noting that Cyy and C3y are positive and

bounded in N, we have
Pr (|§;]| > a) < Cyexp (—ClNCLQ) + Cyexp [—C’gNa2/3(N — 1)1/3} ,
which is the desired result.

C.2 Proof of Theorem 1

(i) Consistency of 3max. The extremum estimator of dyax can be rewritten as dmax =
sup; <(A5z), where §; is defined by

5 ~Ind; = N"'YT Ind; s
e In N ' (©5)

Substituting (57) into (C.5) we obtain

&
InN’

81' —0; = (_;—i— (06)
where ¢; = v; — 0, v = N1 Zf;l v;, and under Assumption 1 we have § = N1 Zj\;l §; =
O(N~1). For any € > 0,

Pr ()&nax ~ Gmmax| > e) — Pr (Smax G > e) +Pr (5max — G < —e) . (C.7)
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Consider the first term on the right-hand side of (C.7), and note that
P (B — b > €)= Pr [sup (5) > €4 S| = Pr [0 (55> €4 )
A N A
= Pr|UY, (bi—di>eta)| <D Pr(di-0 > eha),
i=1

where a; = dmax — 0; > 0. Using (C.6) we obtain

N N
Pr <8max — Omax > e) < ;Pr <5 + lng}\/ > €+ ai> = ;Pr & > ain), (C.8)

where ¢;y = (e — 0+ ai) (In N). Since a; > 0 for all 4, and § < K/N, for some fixed K > 0, we
then have ¢,y > eln N — K (%) , and hence

Pr (& > qiv) < Pr [{i >elnN - K (113\?7)} .

Using this result in (C.8) we now obtain

Pr (Esmax O > e) < NsupPr [gi >elnN - K (1%\[)] : (C.9)

where for any choice of € and K, there is some Ny, such that for all N > Ny, eln N— K (%) > 0.
Applying Proposition 4(ii) to §; leads to

2
Pr [§i>elnN—K<h}\‘;V>} < C’Oexp{—ClN {61DN—K<II;\§V>] }

2/3
+02€Xp{—03]\[ [elnN—K<h;éV)] (N—1)1/3}.

Substituting this result in (C.9) now yields

~ 1 N 2
Pr (5max_5max > 6) < C()eXp {IHN—CU\/ [ElnN—K <I;V>:| }

InN\1%?
+Chexp{In N — Csy [elnN—K(Nﬂ (N -1)Y3 3%,

The first exponential term tends to zero since (In N) /N = o(1), Cyye? > 0, Oy is bounded in
N, and as a result In N — Cye? (In N)2 — —o0, as N — oo. Similarly, the second exponential
term also approaches zero for € sufficiently small. To see this, note that

2/3
In N — Cay [elnN -K <h;\§v>] (N —1)/3

2/3
= —Cay [elnN—K<lnN>] (N—1)1/3{1_ v }
N Csn [eln N — K (BX)]77 (Vv —1)1/3
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But (recalling that Csy is bounded in N)

InN InN 1/3
- N =o(1),
Cox el N K (%) (v - 1 ()] =

~

and hence Pr <5max — Omax > e) — 0 as N — oo. Consider now the second term on the right-
hand side of (C.7),

Pr <8max — Omax < —e) = Pr [sup ( z)

IN
|
[0
_|_
(=%
g8
®
|><—l
I
)U
)
=
lz
VS
@Q-rp
INA
|
(@)
+
(o9
8
©
i
N—

Using (C.6) again gives

Pr <5max — Opax < —e) =Pr [ﬂf-vl ( & < —e—0+ aiﬂ .

Consider the ordered values of §;, namely 6.y > () . > 6y > 0, and denote the ¢&;

associated with this ordering by ;. Specifically, {7 is associated with §(;), &5 is associated with
d(2) and so on. Note that the probability of intersection of events is invariant to the reordering.
Therefore, we have

X & _
_ < _¢) = N i« e A
Pr <(5max Omax < 6) Pr |:m7,_1 <lnN <-—€e—0+ Q(4) )

where a(1) = dmax — 0(1) = 0, and a(; > 0 for i > 1. Denote the events { 52’;\, < —e—0+ agiys

In

i=1,2,...,N} by {Af}, and suppose that Pr (A}) > 0. The case where Pr (A}) = 0 can be ruled

out, since in that case we must have Pr <5max — Omax < —e) =0, and Pr <5max — Omax > 6) — 0

as N — oo, and consistency of Smax follows trivially. But under Pr(A}) > 0, the conditional
probability Pr (N}¥,A% | A} ) exists and since 0 < Pr (N, A% |A}) < 1, it follows that

Pr [ﬁij\il (hle <—e—0+ a(i))} = Pr(A}) x Pr (N[, A7 |A}) < Pr(A7).

Consider now Pr (A}) and note that Pr(A}) = Pr [} < — (e+6) In N|, where € + 6 > 0. Now
using result (ii) in Proposition 4 we have

Pr <5max — Omax < —6) < Cpexp [_CIN (e+ 3)2 (In N)2]

+Chexp [—cgw (e+3)** (n N3 (N — 1)1/3] |

Recalling that §In N = O (N"'InN) = o(1), Ciy and Csy are positive and bounded in N, it
is easily seen that both exponential terms of the above tend to zero for any € > 0. Thus, overall

Pr (’Zsmax — Omax

> e) — 0 as N — oo, and this completes the proof of part (i) of the theorem.
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(ii) Asymptotic distribution of 0,,,x. Consider now part (ii) of the Theorem and note
that for any a € R,

(In N) <5max—6(1)) <ol —prlny, (In N) (51‘—5(1)) <a

Oy Ou a

Pr

~

Let ®n = (InN) <5max — 6(1)) /ov. Using (C.5) we have

Pr(®y <a)=Pr [ﬂfvl <Ui — < biN)] )

where

(ln N) (5(1) - (51 - 5)

(o83

bz’ N =a-+
Equivalently, we can also write

Pr(®y <a)=Pr [ﬂi]\il <Ui — < b;‘kN>} )
o

v

where v} is defined in Assumption 4 and

In N (81 — 8y —
by —at ) (6 =@ —9)
Ov

Furthermore,

Pr(®y <a) = Pr [mZNl(Ui — Sb;‘kN>
g

v
vE— 0 In InN
+ Pr ﬂ]\i<l §b*)1‘)>]xPr<T)>>
|:21 o0 iN N \/N
Note that
vF— 10 In N * In N
Pr|nN, (= <bv)lo< —=—=—1| <Pr|n¥, = < p ——
i (5 ) =] < (3 23]
and under Assumption 4 we have
vE— 0 In N
Pr|nY, (= <btyv ) |lo< —=
[( oy “V> “—wv}

* In N ¥ In N
< Pr[ o <g’§be+aU13N>] Y, ., Pr <g’§be+aln).
% v

In addition,




for some positive finite constant C5. Thus, overall we have

* In N ¥ In N
Pr(®dy <a) < Pr[ i1 (?ﬁbe‘*‘%l;N)] Hi]\ierlPr(:_ZSb:N—"le\I;N)

0o -0 (Y ]}

Now consider the limit of the above probability distribution as N — co. Since m is assumed to
be finite, the last term approaches zero as N — oo. Note that

. sInN )
biN—i_o-vlﬁ —  a, fOI'Zzl,

In N
biy + ot 2 — 400, fori> 1.

v \/N
Also recall that under Assumption 1, In Né = O (N*1 In N) =o(1), and (1) —d(;) >0, fori > 1

under Assumption 4. Therefore, it follows that

¥ In N
lim Pr(UZSbe—i—U_ln) =1,fori=m+1,m+2,...,N,

N—o0 Oy v v N
and
vl In N vl vy vk
lim Pr{znl<1§bf]v+a;1>] = Pr(lga,2<oo,..., m<oo>
N—oo Oy v N Oy Oy Oy

U*
= Pr (1 < a>,
Ou

which is the marginal distribution of the shock to the dominant unit. Hence, overall we conclude
that for any a € R,

lim Pr(®y <a) <Pr <U1 <a>.

N—oo oy

(iii) Confidence interval for §,,,.. Let F(D < a) denote the limiting distribution of D y.
In the case where v} ~ N(0,02), the result in (ii) implies that for any a € R and as N — oo we
have

F®<a)<P(a). (C.10)

In constructing a symmetric confidence bounds for the upper tail we need to find ¢, > 0 such
that F'(D > ¢,) < p/2, and for the lower tail, F(® < —¢,) < p/2. Consider the upper tail and
note that 1 — F(® < ¢,) < p/2, or F(® <¢,) >1—p/2. Using (C.10) we now have

1*P/2§F(®§Cp)§q)(cp),

and hence ® (c,) > 1 —p/2, which yields ¢, > ®~ (1 —p/2), since ® (¢,) is non-decreasing in c,.
Similarly, for the lower tail (using (C.10)) we also have

F(® < —¢p) <P (—¢p) <p/2.

But ® (—c¢p) < p/2 can also be written as 1 — ® (¢,) < p/2, or ® (¢,) > 1 —p/2, which gives the
same range of values for ¢, as obtained for the upper tail. Therefore, under log-normality of the
largest outdegree and for N sufficiently large, setting ¢, > ®~1(1 — p/2) will ensure that

]\}im Pr(|9n| > c¢p) <F(® >c¢p) + F(® < —¢p) <p.
—00

40



C.3 Proof of Theorem 2

First we note that since z; are distributed independently with finite means and variances then
N
E(zy)=N"') E(z)=8"Pr(z20)+E(2]z <0)[1 —Pr(z > 0)],
i=1

which is finite. Further using standard results for the moments of ordered random variables
(see, for example, Section 4.6 of Arnold et al. (1992)) we have

N—i+1 1 N—i+1 1
E (24)) = (1/8) ZE , Var(zq) = (1/8)* | D 2 ,fori=1,2,...,N. (C.11)
J=1 j=1

Taking expectations and variance of max given by (75), and making use of the above results we
now have

_ N .1 _
. _ E(zmax) — E(zn)  (/B) 3252077 — E(zn)
E (5“") N In N N In N ’ (C.12)
Var <8max> _ Var (zmax) + N2 Zfil Var(z) —2 N1 Zﬁl Cov(Zmax, z(i))
(InN)
- Var (zmax) + N2 Zf\il Var(z) — 2Nt Zfil Var(z(i)) (C.13)
B (In N)? ' '

Also using well known bounds to harmonic series (see, for example, Section 3.1 and 3.2 of Bonar
et al. (2006)), we have

n
1
In(N+1) <[> =] <1+hN,
j=1

and hence N .
lim 72]' =1J

=1. .14

Using (C.11) and (C.14) in (C.12) we now have limy_,oo E <3max) =1/p.

Turning to the variance of Smax, we note that

Var <8max) _ Var (zmax) + (IIVQQN )zzzj‘vl Var(z(i))’
(InN)
(ln N>_2 Var (Zmax) S Var (8max) S (h’l N>_2 |:Va7" (zmax) + <2]\][V; 1> NVar (Zma.X):| )
N N
_ 1 ~ ) 3N — 1 2 1
(hl N) 2 (52 Y < Var (dmax ) < (h’l N) < > 0 2
j§=:1 ;2 ( ) N ; 72

But Z;V:lj_z < 72/6, and hence Var <5max> =0 [(In N)fz}.
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Table 2: Frequencies with which the dominant unit is correctly selected, under Exponent
DGP for Experiment A.1

Empirical frequency (percent)
T\N 100 300 500 1,000 450,000
AI(): O = 1

1 87.15 94.95 97.05 98.25 100.00
2 99.15 99.80 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00
AL(0): Omae = 0.95
1 83.40 92.70 95.20 97.15 100.00
2 98.65 99.70 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00
A1(iH): dmae = 0.85
1 73.65 83.90 88.00 92.70  100.00
2 96.35 99.25 99.85 99.90 100.00
6 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00
A1(iv): dpax = 0.75
1 61.20 71.30 75.00 81.50 99.90
2 90.30 96.55 98.35 99.20 100.00
6 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00

Notes: This table complements Table 1 and reports the frequencies with which the dominant unit is
correctly selected across 2,000 replications. In Experiment A.1, there is one dominant unit and the rest
of the units are non-dominant, namely, dmax = d(1) > 0, and ;) =0 for i = 2,3,..., N. See also the
notes to Table 1.
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Table 3: Estimates of the shape parameter, 3, of the power law and inverse of the expo-
nent, dyay, under Pareto DGP for Experiment B.1 (5 = 1)

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG 1)
cut-off value
10% 1.11 1.02 1.01 1.00 1.00 1.11 1.04 1.02 1.01 1.00
(0.50)  (0.26) (0.20) (0.14) (0.01) (0.35) (0.19) (0.14) (0.10)  (0.00)
20% 1.04 1.01 1.00 1.00 1.00 1.06 1.02 1.01 1.00 1.00
(0.33) (0.18) (0.14) (0.10) (0.00) (0.24) (0.13) (0.10) (0.07)  (0.00)
30% 1.02 1.00 1.00 1.00 1.00 1.04 1.01 1.00 1.00 1.00
(0.26) (0.15) (0.12) (0.08) (0.00) (0.19) (0.11) (0.08) (0.06)  (0.00)
Infeasible Using true dmin,t
cut-off value 1.03 1.00 1.00 1.00 1.00 1.05 1.02 1.01 1.00 1.00
24% (0.30) (0.17) (0.13)  (0.09) (0.00) (0.22) (0.12) (0.09) (0.06) (0.00)
Assumed Maximum Likelihood Estimation (BMLE>
cut-off value
10% 1.24 1.07 1.04 1.02 1.00 1.15 1.05 1.03 1.01 1.00
(0.39) (0.20) (0.15) (0.10) (0.00) (0.26) (0.14) (0.10) (0.07)  (0.00)
20% 1.11 1.03 1.02 1.01 1.00 1.07 1.02 1.01 1.00 1.00
(0.25) (0.13) (0.10) (0.07) (0.00) (0.17)  (0.09) (0.07) (0.05)  (0.00)
30% 1.06 1.01 1.01 1.00 1.00 1.02 0.99 0.99 0.98 0.99
(0.19) (0.11)  (0.08) (0.06) (0.00) (0.13) (0.07) (0.06) (0.04)  (0.00)
Infeasible Using true dmint
cut-off value 1.09 1.03 1.01 1.01 1.00 1.04 1.01 1.00 1.00 1.00
24% (0.23)  (0.12)  (0.09) (0.07) (0.00) (0.15) (0.08) (0.07) (0.05)  (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 44% 38% 37% 35% 24% 3% 33% 31% 29% 22%
1.02 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00
(0.17)  (0.10)  (0.08)  (0.06) (0.00) (0.13) (0.08) (0.06) (0.04)  (0.00)
Bmax = 1/ Smax,T
1.04 1.03 1.02 1.02 1.00 1.01 1.01 1.00 1.00 1.00

(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.04) (0.01)

Notes: The DGP follows the Pareto tail distribution given by (74) with 8 = 1. dmin,+ denotes the assumed lower
bound for the Pareto distribution. The cut-off value refers to the percentage of the largest observations (sorted in
descending order) that are assumed to follow the Pareto distribution. The infeasible cut-off value is computed by
(83) assuming the true value of dpin,; is known. All estimates are averaged across 2,000 replications. Standard
errors are in parentheses. BG ; is the Gabaix-Ibragimov estimator obtained by running the log-log regression, (50).
B MmLE is computed by (51). BCS n is calculated by applying the joint MLE procedure described in Clauset et al.

(2009). 3max,T = sup; (ESLT , where Si,T is computed using (67). The standard error for the inverse of Smaxj is

computed by the delta method. (N/A) indicates that the standard error of SmaX,T cannot be computed when
T=1.
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Table 4: Estimates of the shape parameter, 3, of the power law and inverse of the expo-
nent, dyay, under Pareto DGP for Experiment B.2 (5 = 1.3)

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BGI)
cut-off value
10% 1.44 1.33 1.31 1.30 1.30 1.42 1.34 1.32 1.30 1.30
(0.65) (0.34) (0.26) (0.18) (0.01) (0.45) (0.24) (0.19) (0.13) (0.01)
20% 1.35 1.31 1.30 1.29 1.30 1.36 1.32 1.31 1.30 1.30
(0.43) (0.24) (0.18) (0.13) (0.01) (0.30) (0.17) (0.13) (0.09) (0.00)
30% 1.31 1.29 1.29 1.29 1.29 1.32 1.30 1.29 1.29 1.29
(0.34) (0.19) (0.15) (0.11) (0.00) (0.24) (0.14) (0.11) (0.07) (0.00)
Infeasible Using true dmin,t
cut-off value 1.37 1.31 1.30 1.30 1.30 1.37 1.32 1.31 1.30 1.30
16% (0.49) (0.27) (0.20) (0.14) (0.01) (0.34) (0.19) (0.14) (0.10) (0.00)
Assumed Maximum Likelihood Estimation (BMLE>
cut-off value
10% 1.61 1.39 1.35 1.32 1.30 1.48 1.35 1.33 1.31 1.30
(0.51)  (0.25) (0.19) (0.13) (0.01) (0.33) (0.17) (0.13) (0.09) (0.00)
20% 1.44 1.34 1.32 1.31 1.30 1.37 1.32 1.31 1.30 1.30
(0.32) (0.17) (0.13)  (0.09) (0.00) (0.22) (0.12) (0.09) (0.06) (0.00)
30% 1.34 1.28 1.26 1.26 1.25 1.28 1.25 1.25 1.24 1.25
(0.24) (0.13) (0.10) (0.07) (0.00) (0.17)  (0.09) (0.07) (0.05) (0.00)
Infeasible Using true dmin,t
cut-off value 1.49 1.35 1.33 1.31 1.30 1.39 1.33 1.31 1.31 1.30
16% (0.37) (0.19) (0.15) (0.10) (0.00) (0.24) (0.13) (0.10) (0.07) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 39% 32% 30% 28% 17% 33% 28% 26% 24% 17%
1.31 1.30 1.30 1.30 1.30 1.31 1.30 1.30 1.30 1.30
(0.23) (0.14) (0.11)  (0.08) (0.00) (0.18) (0.11) (0.08) (0.06) (0.00)
Bmax = 1/ Smax,T
1.27 1.27 1.27 1.27 1.27 1.24 1.25 1.25 1.25 1.27
(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.03) (0.00)

Notes: The DGP follows the Pareto tail distribution given by (74) with 5 = 1.3. See also the notes to

Table 3.
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Table 5: Estimates of the shape parameter, 3, of the power law and inverse of the expo-
nent, dpay, under Exponent DGP for Experiment A.1 (5 = 1)

T=1 T=2
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG 1)
cut-off value
10% 0.98 1.10 1.20 1.36 2.39 0.97 1.10 1.20 1.37 2.39
(0.44) (0.29) (0.24) (0.19)  (0.02) (0.31) (0.20) (0.17) (0.14)  (0.01)
20% 1.11 1.28 1.39 1.54 2.11 1.11 1.29 1.39 1.55 2.11
(0.35) (0.23) (0.20) (0.15)  (0.01) (0.25) (0.17) (0.14) (0.11)  (0.01)
30% 1.17 1.34 1.44 1.56 1.91 1.18 1.35 1.45 1.57 1.91
(0.30) (0.20) (0.17) (0.13)  (0.01) (0.22) (0.14) (0.12) (0.09) (0.01)
Assumed Maximum Likelihood Estimation (BMLE>
cut-off value
10% 1.53 1.74 1.84 1.95 2.11 1.44 1.71 1.82 1.93 2.11
(0.48) (0.32) (0.26) (0.19)  (0.01) (0.32) (0.22) (0.18) (0.14) (0.01)
20% 1.52 1.64 1.68 1.73 1.79 1.46 1.62 1.67 1.72 1.79
(0.34) (0.21) (0.17) (0.12)  (0.01) (0.23) (0.15) (0.12) (0.09)  (0.00)
30% 1.42 1.49 1.51 1.54 1.58 1.38 1.48 1.51 1.54 1.58
(0.26) (0.16) (0.12) (0.09)  (0.00) (0.18) (0.11) (0.09) (0.06)  (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 39% 29% 24% 18% 2% 36%  26%  21% 16% 1%
1.37 1.58 1.69 1.85 2.83 1.36 1.59 1.71 1.87 2.87
(0.24) (0.19) (0.17) (0.15)  (0.04) (0.17) (0.13) (0.12) (0.11)  (0.03)
3max = ]-/ gmax,T
1.06 1.04 1.03 1.02 1.01 1.04 1.02 1.02 1.01 1.00
(N/A) (N/A) (N/A) (N/A) (N/A) (0.16) (0.13) (0.12) (0.10)  (0.05)

Notes: The DGP is given by the exponent specification, (77). There is one strong dominant unit and
the rest are non-dominant: dyax = d(1) = 1, with ;) =0 for i = 2,3,..., N, where ;) denotes the ith
largest §. The true value of 8 is 5 = 1. See also the notes to Table 3 for other details.
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Table 6: Estimates of the shape parameter, 3, of the power law and inverse of the expo-
nent, dyax, under Exponent DGP for Experiment A.1 (8 = 1.3)

T=1 T =
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG I)
cut-off value
10% 1.43 1.53 1.61 1.76 2.40 1.38 1.51 1.61 1.76 2.40
(0.64) (0.39) (0.32) (0.25) (0.02) (0.44) (0.28) (0.23) (0.18) (0.01)
20% 1.45 1.59 1.67 1.79 2.11 1.44 1.60 1.68 1.79 2.11
(0.46) (0.29) (0.24) (0.18) (0.01) (0.32) (0.21) (0.17) (0.13) (0.01)
30% 1.44 1.57 1.64 1.72 1.92 1.44 1.58 1.65 1.73 1.92
(0.37) (0.23) (0.19) (0.14) (0.01) (0.26) (0.17) (0.13) (0.10) (0.01)
Assumed Maximum Likelihood Estimation <B ML E)
cut-off value
10% 1.84 1.89 1.95 2.01 2.11 1.70 1.85 1.92 1.99 2.11
(0.58) (0.35) (0.28)  (0.20) (0.01) (0.38) (0.24) (0.19) (0.14) (0.01)
20% 1.65 1.70 1.72 1.75 1.79 1.58 1.67 1.71 1.74 1.79
(0.37) (0.22) (0.17) (0.12) (0.01) (0.25) (0.15) (0.12) (0.09) (0.00)
30% 1.50 1.52 1.54 1.55 1.58 1.45 1.51 1.53 1.55 1.58
(0.27)  (0.16) (0.13)  (0.09) (0.00) (0.19) (0.11) (0.09) (0.06) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 38% 26% 22% 16% 2% 32% 22% 18% 13% 1%
1.50 1.70 1.80 1.95 2.83 1.51 1.72 1.83 1.99 2.87
(0.28) (0.22) (0.19) (0.17) (0.04) (0.21) (0.17) (0.15) (0.13) (0.03)
Bmax = ]-/ gmax,T
1.35 1.36 1.35 1.35 1.31 1.38 1.34 1.34 1.33 1.31

(N/A) (N/A) (N/A) (N/A) (N/A) (0.21) (0.17) (0.15) (0.14)  (0.07)

Notes: The DGP is given by the exponent specification, (77). There is one strong dominant unit and
the rest of the units are non-dominant: dyax = 1/1.3 = 0.77, with §(;) = 0 for i = 2,3,..., N, where J;
denotes the i*" largest 6. The true value of 3 is # = 1.3. See also the notes to Table 5.
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Table 7: Yearly estimates of the degree of dominance, d,., and inverse of the shape
parameter of power law, 3, based on the first-order interconnections, using US input-
ouput tables compiled by Acemoglu et al. (2012)

gmax based on the inverse of B using the first-order interconnections

Inverse of 47

Inverse of By15

Inverse of Bogn

Assumed cut-off value Assumed cut-off value Estimated

Year N dmax 10%  20%  30% 10%  20%  30% cut-off value

1972 483 0.767 0.694 0.727 0.832 0.736 0.829 1.135 0.728 16.8%
(0.142) (0.104) (0.098) (0.106) (0.095) (0.145) (0.081)

1977 524 0.778 0.677 0.725 0.804 0.715 0.852 1.009 0.726 13.6%
(0.133) (0.100) (0.091) (0.099) (0.099) (0.114) (0.086)

1982 529 0.788 0.717 0.739 0.818 0.719 0.786 1.039 0.741 15.3%
(0.139) (0.101) (0.092) (0.099) (0.084) (0.119) (0.082)

1987 510 0.804 0.667 0.731 0.814 0.724 0.849 1.028 0.742 13.3%
(0.132) (0.102) (0.093) (0.101) (0.099) (0.118) (0.090)

1992 476 0.824 0.672 0.758 0.842 0.738 0.891 1.002 0.706 9.5%
(0.137) (0.110) (0.100) (0.107) (0.110) (0.114) (0.105)

1997 474 0.778 0.625 0.698 0.791 0.617 0.909 0.982 0.670 13.1%
(0.129) (0.101) (0.094) (0.090) (0.137) (0.131) (0.085)

2002 417 0.765 0.639 0.687 0.759 0.685 0.756 0.930 0.730 19.4%
(0.139) (0.107) (0.096) (0.106) (0.092) (0.113) (0.081)

Notes: Estimates are obtained using the data sets provided by Acemoglu et al. (2012), which are based
on the US input-output account data by the Bureau of Economic Analysis (BEA). N is the total
number of sectors in a given year and the standard errors are in parentheses. 3max is the extremum
estimator given by (62). The first-order degree sequence is used in the estimation of the shape
parameter of the power law, 5. BG ; is obtained by the log-log regression with Gabaix and Ibragimov
(2011) correction using the OLS regression defined by (50). 3,5 is the maximum likelihood estimate
(MLE) of 8 computed by (51). A 10% cut-off value, for example, means that the Pareto tail is taken to
be the top 10% of all sectors in terms of outdegrees in each year. Acemoglu et al. (2012) report S,
estimates only based on a 20% cut-off point. BCS n is the feasible MLE proposed by Clauset et al.
(2009) and its estimated cut-off values are reported in the last column of the table.

¢ From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the earlier years they are based on the Standard
Industrial Classification (SIC) system.
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Table 8: Yearly estimates of the degree of dominance, 0., and inverse of the shape
parameter of power law, (3, based on the second-order interconnections, using US input-
ouput tables compiled by Acemoglu et al. (2012)

dmax based on the inverse of § using the second-order interconnections

Inverse of BG I Inverse of 3 MLE Inverse of BCS N
Assumed cut-off value Assumed cut-off value Estimated
Year N gmax 10% 20% 30% 10% 20% 30% cut-off value
1972 483 0.767 0.719 0.880 1.035 0.873 1.126 1.353 0.973 15.7%
(0.147) (0.126) (0.122) (0.126) (0.147) (0.174) (0.112)
1977 524 0.778 0.718 0.870 1.008 0.821 1.058 1.351 0.750 9.4%
(0.141) (0.120) (0.114) (0.114) (0.133) (0.177) (0.107)
1982 529 0.788 0.773 0.913 1.013 0.885 1.028 1.329 1.088 23.6%
(0.150) (0.125) (0.114)  (0.122) (0.116) (0.158)  (0.097)
1987 510 0.804 0.686 0.879 1.031 0.883 1.070 1.325 1.110 22.9%
(0.136) (0.123) (0.118)  (0.124) (0.128) (0.161)  (0.103)
1992 476 0.824 0.661 0.869 1.012 0.750 1.014 1.277 0.818 12.2%
(0.135) (0.126) (0.120) (0.108) (0.141) (0.182) (0.107)
1997¢ 474 0.778 0.632 0.790 0.955 0.648 1.100 1.202 0.666 12.0%
(0.130) (0.115) (0.113) (0.095) (0.192) (0.187) (0.088)
2002 417 0.765 0.620 0.768 0.954 0.721 0.998 1.245 0.772 13.4%

(0.135) (0.119) (0.121)  (0.111) (0.151) (0.192)  (0.103)

Notes: This table differs from Table 7 in that the second-order degree sequence is used to produce the
estimates of 5. The results of J,,ax in the third column are the same as those in Table 7 and are
reproduced here for the convenience of readers. See also the notes to Table 7 for further details.
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Table 9: Yearly estimates of the degree of dominance, ¢, for the top five pervasive sectors,
using US input-ouput tables (our data)

~ ~ -~

Yeal' N 5(1) 6(2) (5(3) /5(4) 3(5)

1972 446 0.764 0.740 0.701 0.638 0.608
1977 468 0.774 0.704 0.628 0.608 0.590
1982 468 0.786 0.669 0.655 0.635 0.619
1987 457 0.802 0.669 0.657 0.633 0.629
1992 451 0.823 0.678 0.677 0.646 0.631
1997 452 0.775 0.725 0.635 0.622 0.597
2002 408 0.758 0.743 0.639 0.563 0.560
2007 365 0.722 0.649 0.606 0.591 0.550

Notes: Estimates are obtained using the input-output accounts data downloaded from the Bureau of
Economic Analysis (BEA) website. The table reports the five largest yearly estimates of §, computed
using (67), denoted by 8(1) = Smaxs 3(2), cee 3(5). N is the number of sectors with non-zero outdegrees.
% From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the previous years they are based on the Standard
Industrial Classification (SIC) system.
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Table 10: Identities of the top five pervasive sectors based on the yearly estimates of §

Year The top five pervasive sectors
1972 Wholesale trade
Blast furnaces and steel mills
Real estate
Miscellaneous business services
Motor freight transportation & warehousing
1977  Wholesale trade
Blast furnaces and steel mills
Real estate
Petroleum refining
Industrial inorganic & organic chemicals
1982  Wholesale trade
Blast furnaces and steel mills
Petroleum refining
Private electric services (utilities)
Advertising
1987  Wholesale trade
Blast furnaces and steel mills
Advertising
Motor freight transportation and warehousing
Electric services (utilities)
1992  Wholesale trade
Real estate agents, managers, operators, and lessors
Blast furnaces and steel mills
Trucking and courier services, except air
Advertising
1997 Wholesale trade
Management of companies and enterprises
Real estate
Iron and steel mills
Truck transportation

2002 Management of companies and enterprises
Wholesale trade
Real estate
Electric power generation, transmission, and distribution
Iron and steel mills and ferroalloy manufacturing
2007  Wholesale trade
Management of companies and enterprises
Other real estate
Iron and steel mills and ferroalloy manufacturing
Petroleum refineries

Notes: This table complements Table 9 and reports the identities of those sectors corresponding to the
five largest estimates of § (in descending order) for each year.

% From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the previous years they are based on the Standard
Industrial Classification (SIC) system.
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Table 11: Pooled panel estimates of the degree of dominance, ¢, for the top five pervasive
sectors, using US input-output tables for the two sub-periods 1972-1992 and 1997-2007

Sub-sample 1972-1992 Sub-sample 1997-2007
g(l)f 0.762  Wholesale trade 0.716  Wholesale trade
(0.036) (0.045)
g(g)j 0.667  Blast furnaces 0.683 Management of companies
(0.036) and steel mills (0.045) and enterprises
g(g)j 0.642  Real estate 0.609  Real estate®
(0.036) (0.045)

3(4)7T 0.605 Trucking and courier 0.598 Iron and steel mills
(0.036) services, except air (0.045)
d(5),1 0.605  Miscellaneous business  0.595  Other real estate®

(0.036) services (0.045)
N 548 619
T ) 3

Notes: The pooled estimates for the years 1972, 1977, 1982, 1987 and 1992 are based on US
input-output data using the Bureau of Economic Analysis (BEA) industry codes, which are in turn
based on the Standard Industrial Classification (SIC). For the years 1997, 2002 and 2007, the sectoral
classifications are based on the BEA industry codes, which are based on the North American Industry
Classification System (NAICS). The table gives the five largest panel estimates of 0 together with the
identities of the associated sectors. The estimates are denoted by 3(1)7T = SmaX,T, 5(2)1, . ,5(5)7T, and
the standard errors are given in parentheses. N is the total number of sectors with non-zero outdegrees,
and T is the number of time periods in the panel.

¢ In the BEA industry classifications, the real estate sector was subdivided into housing and other real
estate sectors starting from 2007. Since the pooled estimates are based on unbalanced panels
constructed according to BEA codes, real estate and other real estate are considered as two sectors.
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This supplement considers additional Monte Carlo experiments and provides further
results on the small sample properties of the extremum estimator, complementing the
results already reported in the main paper. Section S1 considers experiments for networks
with exponentially decaying degrees of dominance. Section S2 presents experiments with
unbalanced panels. Section S3 investigates the effects of non-Gaussian shocks to logarithm
of outdegrees. Section S4 presents a complete set of experiments with cross-sectionally
dependent errors. Finally, Section S5 presents additional results for experiments where
the outdegrees are Pareto distributed. The number of replications for all experiments is
set to 2,000.

S1 Experiments with exponentially decaying o

We begin by considering networks of which the units have exponentially decaying degrees
of dominance. The observations on the outdegrees, d;;, are generated by the following
exponent specification:

Indy; =Ink+6;InN+vy, i=1,2,...,N; t=1,2,...,T, (S.1)

where v;; ~ IIDN(0,1), and

exp (—3)

N7y N

such that d;; sum up to N across i for each t. We consider balanced panels and allow all
units to be weakly dominant. To ensure that § = N~ Zfil 0; — 0 at a sufficiently fast
rate, we assume that individual ;) decays exponentially, where the degree of dominance
of unit 7 is denoted by d;, and the associated ordered values are denoted by d(;), namely,
Omax = 0(1) > 0(2) = ... > 5(N).Sl In particular, we consider d(;) = 0.9, fori =1,2,...,N.
The sample sizes are combinations of N = 100, 300, 500, 1,000, and 450,000, and T" =
1,2,6,10, and 20. We report the top four largest estimates of d, denoted by 5maX,T =

SINote that the denominator of (S.2), N~! Zf;l N converges to a finite positive constant.
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A

o), > 8(2),T > 3(3),T > 5(4)7T. Recall that the panel extremum estimator is given by
8max,T = Supi<8i,T), where
2 T Zle Ind;y; — (TN)™ 23;1 Zjvzl Ind;

dir = N , fori=1,2,..., N. (S.3)

When T > 1, the test statistic for the null hypothesis that dpax = 0, . is computed by

max

(InN) (8max,T - 6?nax)

D = (S.4)
. /2
v (7~ 7x)
where N o
52 — D iz Q=1 Vgt (S.5)
v N(T-1) ~’ '
and v;; is given by .
Uy =Indy —Ink — 6;In N. (S.6)

We also carry out misspecification experiments by generating the outdegrees by (S.1)
with §; = 0.75" and 0.9%, for ¢ = 1,2,..., N, and comparing the performance of the

~

inverse of the extremum estimator, 3., = 1/ 5maxT, with that of the three power law es-
timators, namely, the Gabaix-Ibragimov estimator (3.;) by Gabaix and Ibragimov (2011),
the maximum likelihood estimator (B vLe), and the Clauset, Shalzi and Newman (2009,
CSN) estimator (BCSN).SZ The sample sizes under consideration are combinations of
N =100, 300, 500, 1,000, and 450,000, and 7" =1 and 2.

Table S.1 summarizes the estimation results for the four largest values of 9, namely
0.9,0.9%,0.9°, and 0.9*. For other values of d(;, for i = 5,6,..., N, the estimates fall
below 1/2 and have no consequence for the shock diffusion within the network. These
results confirm the validity of our theoretical derivations for the case where the degrees
of dominance of units in a network decay exponentially.

Table S.2 reports the frequencies with which each of the top four dominant units are
selected across 2,000 Monte Carlo replications. The probability of correct identification
is lower, compared with the results for the experiments with a finite number of dominant
units (Table 2 in the main paper). As expected, the more clustered are the degrees of
pervasiveness across units, the more difficult it is to differentiate one unit from another.

Finally, turning to Tables S.3 and S.4, we observe that the three power law estima-
tors all suffer from severe biases when the data generating process follows the exponent
specification, especially when N is large.

S2 Experiments with unbalanced panels

In empirical applications, production networks observed at different points in time might
not have the same units in common. As a result we are often faced with unbalanced panel

52See Section 6.1 of the main paper for details about the power law estimators.
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data sets. One approach would be to employ a sufficiently high level of aggregation so
that we end up with a balanced panel. But this procedure is likely to be inefficient as we
end up with a smaller number of units in the network. Here we consider estimating 0.y
with the unbalanced panel, without any aggregation. We assume for each unit ¢ we have
observations on its outdegrees for at least two time periods.

Suppose that the observations on the outdegrees, d;;, are available for : =1,2,..., N,
and t = T2, TP +1,..., T, (T} > T?). We consider the data generating process (DGP)
given by (S.1), where vy ~ IIDN(0,1), and generate an unbalanced panel where the
number of time series observations for unit 4, namely T; = T! — TP + 1, lies between 2
and 4. To ensure that the most important dominant units are present across the years,
only units in the bottom 95 percentile of the distribution of § were subject to missing
observations. In the case of these units, we dropped the first and the last observations with
a 50% probability. This randomization process is repeated for all the 2,000 replications.

We consider networks with a finite number of dominant units, and a large number of
non-dominant units. Specifically,

e UB.1. One strong dominant unit: dyax = 01y = 1, and 6y = 0 for i = 2,3,..., N.

e UB.2. Two dominant units (one strong and one weak): dmax = d(1) = 1, 6(2) = 0.75,
and ;) = 0 fori=3,4,...,N.

The extremum estimator of 0., is given by 5maX7T = supi(&-,T), where

TS o ndy = NS (TS o nds)

dir = N . (S.7)
The test statistic for testing the null hypothesis that pax = 0%, is given by
(0 N) (S = D
D = (S.8)

1/2 7
& 1 1
v Tmax NTmax

where T},., refers to the sample size of the most dominant unit, and

_ T R
Zij\il (T: = 1) ' Zt;TiO U?t
v N )

where 0;; is given by (S.6).

The results are presented in Table S.5. It can be seen that the extremum estimator
continues to perform well. Note, however, in the case of unbalanced panels, we need to
assume that T, > 1, namely, the outdegrees of the unit with the highest degrees of
dominance are observed for at least two time periods.
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S3 Experiments with non-Gaussian errors

Theorem 1 in the paper shows that the extremum estimator is consistent for d,a., if the
error process obeys a sub-Gaussian distribution, and its limiting distribution depends on
the shock to the largest outdegree. We examine this theoretical result by considering
networks where there is only a single dominant unit with 0. = 01y = 0.9, and all the
other units are non-dominant, i.e., ;) = 0, for i = 2,3,..., N. The observations on the
outdegrees are generated according to (S.1), and we consider the following two cases for
the error process:

e NG.1. vj, ~ IIDN (0,1), v}, ~ IIDU (—a,a), fori =2,3,..., N and all ¢, where v},
denotes the shock associated with §(;), and U (—a, a) denotes uniform distribution
on the interval (—a,a).

e NG.2. vy ~ IIDU (—a,a), fori=1,2,...,N and all t.

It can be verified that v;; is sub-Gaussian with variance a?/3. We set a = v/3 so that
02 = Var (vy) = 1. To ensure that the outdegrees sum up to N for any ¢, in Experiment
NG.1, k takes the value such that

K

N
N°OE (e”i) + ZE (e”zt)] = N,

=2
which gives

k=N lN%eé + (N —1) (%)] B . (S.9)

a

Similarly, in Experiment NG.2, « is set to

o= v 1)] ( ;) (5.10)

The extremum estimator of d,,,, is computed by SmaX,T = supi(&-;p), where &j is given
by (S.3). We examine the size and power properties based on known as well as unknown
o2. If 02 is unknown (and if 7' > 1), it is estimated by (S.5).

The results are presented in Tables S.6 and S.7. The plots of empirical powers functions
are shown in Figures 1-5.

S4 Experiments with cross-sectionally dependent er-
rors

In this section, we provide a full set of results under the same exponent DGP as in the
main text but with various intensities of cross-sectional dependence. Specifically, the
DGP for the outdegrees is given by

Indy =Ink+6;InN+vy,i=1,2,...,N;t=1,2,...,T, (S.11)
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where v;; are generated as

N
Vig = 1 Z W,V + Eit, (S.12)
j=1
git ~ IIDN (0,1), Wy, = (wyij) vy x 1S given by
0 3 0 3
: 0 : .- 0
w,=| 03 0 5 0 (S.13)
5 0 5 0
and k is set to ,
o (~4)
N-1Y o, N

with 02 = Var (vy). We examine three levels of cross-sectional dependence in the errors:
1 = 0.2, 0.5, and 0.75, and for each level we conduct the following experiments:

e A.l. One dominant unit: dpmax = 6(1y > 0, and rest are non-dominant: d; = 0 for
i=2,3,...,N. We consider four specific cases: (i) dmax = 1; (ii) Omax = 0.95; (iii)
Omax = 0.85; and (iv) dyax = 0.75.

e A.2. Two dominant units: dmax = d(1) > 0, d(2) > 0, and the rest are non-dominant:
d4 = 0 for i = 3,4,..., N. In particular, we consider three cases: (i) d1) = 0.95,
(5(2) = 085, (11) (5(1) = 095, 5(2) = 075, and (111) 5(1) = 085, (5(2) = 0.75.

The sample sizes are combinations of N = 100, 300, 500, 1,000, and 450,000, and
T =1,2,6,10, and 20.

Tables S.8-S.13 present the small sample properties of the extremum estimator for the
dominant units. Tables S.14-S.16 show the empirical frequencies with which the dominant
units are jointly correctly selected.

S5 Experiments under Pareto data generating process

This section complements the experiments under Pareto DGP in the main text and present
results when the true value of 3, the shape parameter of Pareto distribution, takes different
values. As in the main paper, the outdegrees are generated as d;; = y;;/y;, where y;; are
drawn from the following distribution

Ci(Yit/Yuming) " PV, for i > Yuming
fyir) = : (S.14)
Ctei(ﬁJrl)(yit/ymin’til)v fOI' Yit < Ymin,t
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fori=1,2,...,N;t=1,2,....7, 5 = NN ¥it, dumint = Yomint /T, and

-1
Ymin,t
+

f+1 B

. A+l _ 1
Ct _ Ymin,t (6 )

We have considered experiments where 8 = 1.0 and § = 1.3 in the text, and here we
report results for § = 1.1 (dpmax = 1/1.1 = 0.90) and 5 = 1.2 (0yax = 1/1.2 = 0.83). The
values of Ymins are set as Ymins = Ymin = 15. The sample sizes are combinations of N =
100, 300, 500, 1, 000, and 450,000, and 7" = 1 and 2. We examine the performance of the
Gabaix-Ibragimov estimator (BG ;) for different given cut-off values, dp;y +, the maximum
likelihood estimator (3,,; ;) for different dyy ¢, the CSN estimator (3, ) which estimates
[ jointly with the cut-off value, and the inverse of the extremum estimator, Bmax =
1/ &MX,T. Tables S.17 and S.18 collect the estimation results.
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Table S.2: Frequencies with which each of the top four dominant units are correctly
selected under Exponent DGP with exponentially decaying 0

Empirical frequency (percent)
T\N 100 300 500 1,000 450,000

1 40.40 4840 51.85 56.15 78.05
2 54.00 60.65 64.00 68.00 87.65
6 72.20 80.20 83.30 86.50  97.85
10 79.60 85.85 88.25 90.85 99.80

20 89.95 94.85 9585 97.25  99.95
52 = 0.9 =081

1 23.10 27.15 29.15 31.25  54.95
2 31.55 3820 41.60 46.00 73.20
6 48.05 59.00 63.65 69.15 94.20
10 5945 69.95 75.15 80.40  98.95

20 7820 87.60 89.70 92.90  99.90
Sz = 0.9° = 0.729

1 14.80 18.85 21.80 25.25  48.30
2 21.90 28.55 31.75 35.35 65.45
6 40.40 50.80 55.15 61.00 90.90
10 5495 6540 7095 76.50 97.70

20 73.20 83.50 86.75 90.75  99.95
84 = 0.9 = 0.6561

1 10.90 14.50 17.05 18.80 41.80
2 17.75 23.85 2590 28.80 59.80
6 37.30 47.50 51.55 56.55  87.80
10 50.80 60.65 65.55 71.30 95.75

20 68.00 78.00 82.30 87.15 99.85

Notes: This table complements Table S.1 and reports the frequencies with which each of the top four
dominant units are selected across 2,000 replications. The DGP is given by (S.1), where the true values
of § are generated as d;) = 0.9%, for i =1,2,...,N. See also the notes to Table S.1.
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Table S.3: Estimates of the shape parameter, 3, of the power law and inverse of the
exponent, dyax, under Exponent DGP with exponentially decaying d;), where ;) = 0.9°
(8=1/0.9=1.11)

T=1 T=2
100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (EG I)
cut-off value
10% 1.06 0.92 0.95 1.04 2.34 1.08 0.93 0.96 1.05 2.34
(0.48) (0.24) (0.19) (0.15)  (0.02) (0.34) (0.17) (0.14) (0.11)  (0.01)
20% 0.99 1.00 1.06 1.19 2.09 1.01 1.01 1.07 1.19 2.09
(0.31) (0.18) (0.15) (0.12)  (0.01) (0.23) (0.13) (0.11) (0.08) (0.01)
30% 0.98 1.04 1.12 1.25 1.90 0.99 1.05 1.12 1.25 1.90
(0.25) (0.16)  (0.13) (0.10)  (0.01) (0.18) (0.11) (0.09) (0.07)  (0.01)
Assumed Maximum Likelihood Estimation <EMLE)
cut-off value
10% 1.13 1.10 1.22 1.44 2.11 1.05 1.07 1.21 1.42 2.11
(0.36)  (0.20) (0.17)  (0.14)  (0.01) (0.23)  (0.14) (0.12) (0.10)  (0.01)
20% 1.04 1.18 1.29 1.45 1.79 1.01 1.16 1.28 1.44 1.79
(0.23) (0.15) (0.13) (0.10)  (0.01) (0.16) (0.11) (0.09) (0.07)  (0.00)
30% 1.01 1.16 1.25 1.36 1.57 0.98 1.15 1.25 1.36 1.57
(0.18) (0.12) (0.10) (0.08)  (0.00) (0.13) (0.09) (0.07) (0.06)  (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 49% 39% 36% 30% 1% 46% 38% 35% 28% 1%
0.96 1.13 1.24 1.40 2.82 0.95 1.12 1.23 1.40 2.84
(0.15)  (0.11) (0.10) (0.08)  (0.04) (0.11) (0.08) (0.07) (0.06)  (0.03)
Bmax = 1/ Smax,T
1.09 1.06 1.06 1.07 1.10 1.16 1.11 1.10 1.10 1.11
(N/A) (N/A) (N/A) (N/A) (N/A) (0.21) (0.15) (0.14) (0.12)  (0.07)

Notes: The DGP is given by (S.1). The true values of § are generated as ;) = 0.9%, fori=1,2,...,N,
where §(;) denotes the i'" largest 6. The true value of 3 is 8 = 1/0.9 = 1.11. 36‘[ denotes the
Gabaix-Ibragimov estimate, 3 v e denotes the maximum likelihood estimate, Bc gn denotes the

feasible maximum likelihood estimate developed in Clauset et al. (2009). 3max7T = sup; (Si’T), where

0; 7 is computed using (S.3). The standard error for the inverse of 3max,T is computed by the delta
method. (N/A) indicates that the standard error of d.x cannot be computed when T' = 1.
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Table S.4: Estimates of the shape parameter, , of the power law and inverse of the
exponent, dmax, under Exponent DGP with exponentially decaying d;), where d;) = 0.75’

(8 =1/0.75 = 1.33)

T = T =
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG 1)
cut-off value
10% 1.36 1.39 1.47 1.60 2.39 1.34 1.39 1.47 1.60 2.39
(0.61) (0.36) (0.29) (0.23)  (0.02) (0.42) (0.25) (0.21) (0.16)  (0.01)
20% 1.34 1.45 1.54 1.66 2.11 1.34 1.46 1.54 1.67 2.11
(0.42) (0.27) (0.22) (0.17) (0.01) (0.30) (0.19) (0.15) (0.12) (0.01)
30% 1.31 1.45 1.52 1.63 1.91 1.32 1.45 1.53 1.63 1.91
(0.34) (0.22) (0.18) (0.13) (0.01) (0.24) (0.15) (0.13) (0.09) (0.01)
Assumed Maximum Likelihood Estimation (B ML E)
cut-off value
10% 1.61 1.67 1.75 1.86 2.11 1.48 1.63 1.72 1.85 2.11
(0.51) (0.30) (0.25) (0.19) (0.01) (0.33) (0.21) (0.17) (0.13) (0.01)
20% 1.46 1.56 1.61 1.68 1.79 1.40 1.54 1.60 1.67 1.79
(0.33) (0.20) (0.16) (0.12) (0.01) (0.22) (0.14) (0.11) (0.08) (0.00)
30% 1.35 1.43 1.47 1.51 1.58 1.31 1.42 1.46 1.50 1.58
(0.25)  (0.15) (0.12) (0.09) (0.00) (0.17)  (0.11) (0.08) (0.06) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 41% 29% 24% 18% 1% 35% 25% 21% 16% 1%
1.31 1.52 1.62 1.78 2.83 1.33 1.53 1.64 1.80 2.87
(0.23) (0.18) (0.16) (0.14) (0.04) (0.17)  (0.13) (0.12) (0.11) (0.03)
Bmax = 1/ gmax,T
1.32 1.33 1.33 1.34 1.34 1.39 1.36 1.36 1.35 1.34
(N/A) (N/A) (N/A) (N/A) (N/A) (0.30) (0.23) (0.21) (0.19) (0.10)

Notes: The DGP is given by (S.1). The true values of ¢ are generated as ;) = 0.75%, fori = 1,2,..., N,
where §(;) denotes the ith largest §. The true value of 3 is 8 = 1/0.75 = 1.33. See the notes to Table S.3.
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Table S.5: Bias, RMSE, size and power of the extremum estimator for the dominant units
under Exponent DGP with unbalanced panels

Experiment UB.1: One strong UB.2: Two dominant units:
dominant unit one strong and one weak
Omax = 1 d1) =1, 02y = 0.75
N o =1 d2) = 0.75
Bias 100 -1.25 -1.64 -2.40
(x100) 300 -0.52 -0.65 -0.94
500 -0.38 -0.45 -0.64
1,000 -0.26 -0.30 -0.41
450,000 -0.08 -0.08 -0.10
RMSE 100 10.74 10.34 10.72
(x100) 300 8.65 8.46 8.71
500 7.94 7.81 8.03
1,000 7.14 7.06 7.24
450,000 3.79 3.79 3.87
Size 100 5.10 3.95 4.40
(x100) 300 4.55 3.80 4.55
500 4.25 3.90 4.60
1,000 4.15 3.75 4.30
450,000 4.25 4.25 4.70
Power 100 13.00 11.30 71.85
(x100) 300 18.80 18.00 83.90
500 22.65 22.10 88.80
1,000 26.50 26.10 94.35
450,000 73.75 73.75 100.00

Notes: The unbalanced panels are generated with T},,x = 4. For each Monte Carlo replication, the top
5% of the units in terms of the true degree of dominance do not have missing observations, whereas the
rest will have missing data for the first and the last periods with a 50% probability. The DGP is given
by (S.1). For Experiment UB.1, there is one strong dominant unit and the rest are non-dominant:

Omax = 1, and §;) = 0 for i = 2,3,..., N. For Experiment UB.2, there are two dominant units (one
strong and one weak), and the rest are non-dominant: 6.1y = 1, d(2y = 0.75, and §(;) = 0 for
i=3,4,...,N. §(; denotes the it" largest 0, i.e., Smax = d1y > d2) = 0¢3) > ... The extremum
estimator is estimated by 3maX7T = supi(&-,T), where 3in is given by (S.7). The test statistic is
computed by (S.8). The power is calculated at 0.9 if true value is 1, and at 1 if true value is 0.75. The
number of replications is 2, 000.
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Table S.6: Bias, RMSE, size and power of the extremum estimator for Experiment NG.1
(non-Gaussian errors)

T\N 100 300 500 1,000 450,000 | 100 300 500 1,000 450,000
Bias(x100) RMSE(%100)
1 -1.06 -0.45 -0.33 -0.22 -0.06 | 21.27 17.36 15.94 14.35 7.63
2 -119 -0.55 -0.40 -0.27 -0.10 | 15.34 1238 11.36  10.23 5.44
6 -1.13 -046 -0.32 -0.21 -0.07 | 882 7.08 6.49 5.84 3.10
10 -1.18 -0.50 -0.37 -0.26 -0.09 | 697 559  5.13 4.61 2.45
20 -1.03 -040 -0.27 -0.18 -0.05 | 493 392  3.60 3.24 1.72
Size(x100) Power(x100)
o2 is known
1 480 490 470 4.75 490 | 13.80 19.55 2220 27.05  74.30
2 5.65 4.80 5.00 4.90 495 |23.30 3495 40.65 49.15  95.05
6 4.55 4.65 435 4.35 4.65 | 57.35 7825 85.35 91.95 100.00
10 530 525 5.15 5.30 5.30 | 7810 93.90 97.60 99.45  100.00
20 525 5.00 490 4.90 490 |97.65 99.80 100.00 100.00 100.00
o2 is estimated

1 N/A N/JA N/A N/A N/A | NJA N/A N/A N/A N/A
2 5,55 5.10 5.00 5.05 495 | 2335 34.85 4040 4895  95.05
6 475 475 440 4.40 4.65 | 57.45 7825 8530 91.90  100.00
10 525 515 5.25 5.30 5.35 | 7845 94.10 97.55 99.45  100.00
20 515 5.05 490 4.90 490 |97.60 99.80 100.00 100.00 100.00

Notes: The DGP is given by (S.1). There is one dominant unit with dyax = 41y = 0.9, and all the other
units are non-dominant, i.e., §;y = 0, for i = 2,3,..., N. The shocks are generated as v{; ~ IIDN (0, 1),

vl, ~ IIDU (—a,a), for i = 2,3,..., N and all ¢, where a = /3 so that ¢ = Var (v;;) = 1.The

extremum estimator is computed by 3maX,T = sup; (SM), where SLT is given by (S.3). N/A indicates

that the size and power cannot be computed when 7= 1. When T > 1, 02 can be estimated by (S.5).
The nominal size of the test is 5%, and power is computed at 0.7. The number of replications is 2, 000.
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Table S.7: Bias, RMSE, size and power of the extremum estimator for Experiment NG.2
(non-Gaussian errors)

T\N 100 300 500 1,000 450,000 | 100 300 500 1,000 450,000

Bias(x100) RMSE(x100)

1 -1.18 -0.53 -0.39 -0.28 -0.10 | 21.55 17.48 16.08 14.47 7.68
2 -1.20 -0.54 -0.40 -0.29 -0.11 15,51 12,56 11.52  10.37 5.50
6 -1.09 -0.47 -0.33 -0.22  -0.07 891 T7.17 6.58 5.91 3.14
10 -1.19 -0.54 -0.40 -0.28  -0.10 6.98  5.60 5.13 4.62 2.45
20 -1.01 -0.39 -0.26 -0.16 -0.04 4.87  3.88 3.56 3.20 1.70

Size(x100) Power(x100)
o2 is known
1 0.10 0.00 0.00 0.00 0.00 18.20 24.55 27.55  32.10 68.15
4.70 4.65 4.40 4.40 4.45 24.40 34.45 40.40  49.50 95.30
6 5.50 5.10 490 4.85 4.85 56.85 77.25 8490 91.80  100.00
10 5.75  5.45 5.50  5.55 5.55 77.95 94.10 97.15  99.40  100.00
20 5.35  4.75 440 4.25 4.35 98.05 99.90 100.00 100.00 100.00

o2 is estimated

1 N/A N/A N/A N/A N/A |N/A N/A N/A N/A NJ/A

5.30 4.65 4.60 4.50 4.45 24.20 34.35 40.40 49.10 95.25
6 550 495 490 4.90 4.85 57.10 77.35 85.00 91.90 100.00
10 595 540 550 555 555 | 77.80 94.05 97.10  99.40  100.00
20 535 475 450 435 435 | 9805 99.90 100.00 100.00 100.00

Notes: The DGP is given by (S.1). There is one dominant unit with dy,ax = (1) = 0.9, and all the other
units are non-dominant, i.e., ;) = 0, for i = 2,3,..., N. The shocks are generated as

vit ~ IIDU (—a,a), for i = 1,2,..., N and all ¢, where a = v/3 so that 02 = Var (v;) = 1. See also the
notes to Table S.6.
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Figure 1: Empirical power functions of testing ¢ = 0.9 for different values of ¢ for

Experiment NG.1, when T'= 1 and ¢2 is known
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Figure 2: Empirical power functions of testing ¢ = 0.9 for different values of ¢ for

Experiment NG.1, when T'= 2 and ¢2 is known
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Table S.14: Frequencies with which the dominant unit or units are jointly correctly se-
lected, under Exponent DGP for Experiments A.1 and A.2, in the case of low level of

cross-sectional dependence (1) = 0.2)

(a) Experiment A.1

(b) Experiment A.2

Empirical frequency (percent)

Empirical frequency (percent)

T\N 100 300 500 1,000 450,000 T\N 100 300 500 1,000 450,000
AL(): Oy = 1 A2(1): 61 = 0.95, 62 = 0.85
19655 9930 99.70 99.85  100.00 1 5415 63.10 66.10 70.30 85.05
2 99.95 100.00 100.00 100.00  100.00 2 6705 7420 7425 T77.95 92.10
6 100.00 100.00 100.00 100.00  100.00 6 &81.15 8540 8740 90.80 99.00
10 100.00 100.00 100.00 100.00  100.00 10 86.65 91.10 93.40 94.95 100.00
20 100.00 100.00 100.00 100.00  100.00 20 9425 9730 98.35 99.40 100.00
A1(): Opmax = 0.95 A2(i1): 6) = 0.95, 6 = 0.75
1 9460 9835 99.15 99.65 100.00 1 5580 71.55 76.00 81.35 97.60
2 99.85 100.00 100.00 100.00 100.00 2 80.85 8840 90.60 94.05 99.70
6 100.00 100.00 100.00 100.00  100.00 6 9545 98.70 98.90 99.40  100.00
10 100.00 100.00 100.00 100.00  100.00 10 98.80 99.75 99.80 99.95 100.00
20 100.00 100.00 100.00 100.00  100.00 20 99.95 100.00 100.00 100.00  100.00
A1(ii1): Ome = 0.85 A2(ifi): 01y = 0.85, 62y = 0.75
1 8795 9580 97.35 98.65 100.00 1 4435 56.75 60.90 66.30 85.05
2 9950 99.90 100.00 100.00  100.00 2 65.15 7390 7410 77.90 92.10
6 100.00 100.00 100.00 100.00  100.00 6 81.15 8540 87.40 90.80 99.00
10 100.00 100.00 100.00 100.00  100.00 10 86.65 91.10 93.40 94.95 100.00
20 100.00 100.00 100.00 100.00  100.00 20 9425 9730 98.35 99.40  100.00
A1(iv): dmax = 0.75
1 7870 88.85 91.95 95.30 100.00
2 9760 99.50 99.95 100.00 100.00
6 100.00 100.00 100.00 100.00  100.00
10 100.00 100.00 100.00 100.00  100.00
20 100.00 100.00 100.00 100.00  100.00

Notes: This table reports the frequencies with which the dominant units are jointly correctly selected
across 2,000 replications when ¢ = 0.2. See also the notes to Tables S.8 and S.9.
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Table S.15: Frequencies with which the dominant unit or units are jointly correctly se-
lected, under Exponent DGP for Experiments A.1 and A.2, in the case of medium level

of cross-sectional dependence (¢ = 0.5)

(a) Experiment A.1

(b) Experiment A.2

Empirical frequency (percent)

Empirical frequency (percent)

T\N 100 300 500 1,000 450,000 T\N 100 300 500 1,000 450,000
AL(): Oy = 1 A2(1): 61 = 0.95, 62 = 0.85
1 8715 9495 97.05 98.25 100.00 1 4315 5340 5840 65.20 85.80
2 99.15 99.80 100.00 100.00  100.00 2 6455 7470 T75.05 T78.85 92.70
6 100.00 100.00 100.00 100.00  100.00 6 8195 8650 88.85 91.60 99.20
10 100.00 100.00 100.00 100.00  100.00 10 8830 92,55 9440 96.25 100.00
20 100.00 100.00 100.00 100.00  100.00 20 95.10 9795 98.65 99.70  100.00
A1(): Opmax = 0.95 A2(i1): 6) = 0.95, 6 = 0.75
1 8340 9270 9520 97.15 100.00 1 4235 5550 61.20 69.40 97.85
2 98.65 99.70 100.00 100.00  100.00 2 76.10 87.75 90.90 94.20 99.90
6 100.00 100.00 100.00 100.00  100.00 6 96.45 99.15 99.20 99.60 100.00
10 100.00 100.00 100.00 100.00  100.00 10 99.00 99.80 99.85 100.00  100.00
20 100.00 100.00 100.00 100.00  100.00 20 99.95 100.00 100.00 100.00  100.00
A1(ii1): Ome = 0.85 A2(ifi): 01y = 0.85, 62y = 0.75
1 7365 8390 88.00 92.70 100.00 1 3350 4220 48.10 55.20 85.70
2 96.35 99.25 99.85 99.90 100.00 2 5975 7255 T74.05 78.30 92.70
6 100.00 100.00 100.00 100.00  100.00 6 8190 86.50 88.85 91.60 99.20
10 100.00 100.00 100.00 100.00  100.00 10 88.30 9255 9440 96.25 100.00
20 100.00 100.00 100.00 100.00  100.00 20 9510 9795 98.65 99.70  100.00
A1(iv): dmax = 0.75
1 6120 71.30 75.00 81.50 99.90
2 9030 96.55 98.35 99.20 100.00
6 100.00 100.00 100.00 100.00  100.00
10 100.00 100.00 100.00 100.00  100.00
20 100.00 100.00 100.00 100.00  100.00

Notes: This table reports the frequencies with which the dominant units are jointly correctly selected
across 2,000 replications when ¢ = 0.5. See also the notes to Tables S.10 and S.11.
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Table S.16: Frequencies with which the dominant unit or units are jointly correctly se-
lected, under Exponent DGP for Experiments A.1 and A.2, in the case of high level of

cross-sectional dependence (1) = 0.75)

(a) Experiment A.1

(b) Experiment A.2

Empirical frequency (percent)

Empirical frequency (percent)

T\N 100 300 500 1,000 450,000 T\N 100 300 500 1,000 450,000
AL(): Oy = 1 A2(1): 61 = 0.95, 62 = 0.85
1 5445 61.66 64.10 69.15 99.65 1 21.80 24.15 2540 29.75 79.95
2 8540 93.10 9515 96.60 100.00 2 44.00 57.25 59.10 67.45 91.80
6 99.85 100.00 100.00 100.00  100.00 6 79.70 8555 87.50 90.00 99.05
10 100.00 100.00 100.00 100.00  100.00 10 86.70 90.75 93.20 95.05 99.95
20 100.00 100.00 100.00 100.00  100.00 20 9420 97.15 9795 99.05 100.00
A1(): Opmax = 0.95 A2(i1): 6) = 0.95, 6 = 0.75
1 5050 55.50 57.70  62.55 99.20 1 2120 23.10 24.15 27.65 78.95
2 80.75 90.05 9250 94.50 100.00 2 4700 59.25 64.05 71.90 99.45
6 99.75 99.95 100.00 100.00  100.00 6 9295 9825 9850 99.45 100.00
10 100.00 100.00 100.00 100.00  100.00 10 98.65 99.65 99.75 100.00 100.00
20 100.00 100.00 100.00 100.00  100.00 20 99.90 100.00 100.00 100.00  100.00
A1(ii1): Ome = 0.85 A2(ifi): 01y = 0.85, 62y = 0.75
1 4180 43.00 4550 49.45 95.25 1 1630 17.10 1825 20.15 67.00
2 7115 8145 8390 88.15 100.00 2 3565 46.80 48.95 57.80 91.60
6 99.15 99.85 100.00 100.00  100.00 6 77.65 8520 87.40 90.00 99.05
10 100.00 100.00 100.00 100.00  100.00 10 86.70 90.70  93.20  95.05 99.95
20 100.00 100.00 100.00 100.00  100.00 20 9420 9715 9795 99.05 100.00
A1(iv): dmax = 0.75
1 33.05 3220 33.85 35.70 81.30
2 6030 68.25 7145 76.80 99.95
6 9725 99.30 99.90 100.00 100.00
10 99.95 100.00 100.00 100.00  100.00
20 100.00 100.00 100.00 100.00  100.00

Notes: This table reports the frequencies with which the dominant units are jointly correctly selected
across 2,000 replications when 1 = 0.75. See also the notes to Tables S.12 and S.13.
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Table S.17: Estimates of the shape parameter, 5, of the power law and inverse of the
exponent, 0., under Pareto DGP when § = 1.1

T=1 T=2
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG I)
cut-off value
10% 1.22 1.12 1.11 1.10 1.10 1.21 1.14 1.12 1.11 1.10
(0.55) (0.29) (0.22) (0.16) (0.01) (0.38) (0.21) (0.16) (0.11) (0.01)
20% 1.15 1.11 1.10 1.10 1.10 1.16 1.12 1.11 1.10 1.10
(0.36) (0.20) (0.16) (0.11) (0.01) (0.26) (0.14) (0.11) (0.08) (0.00)
30% 1.12 1.10 1.10 1.09 1.10 1.13 1.11 1.10 1.10 1.10
(0.29) (0.16) (0.13)  (0.09) (0.00) (0.21) (0.12) (0.09) (0.06) (0.00)
Infeasible Using true dmin,¢
cut-off value 1.14 1.10 1.10 1.10 1.10 1.16 1.12 1.11 1.10 1.10
24% (0.36) (0.20) (0.15) (0.11) (0.01) (0.25) (0.14) (0.11) (0.08) (0.00)
Assumed Maximum Likelihood Estimation <3MLE>
cut-off value
10% 1.37 1.18 1.14 1.12 1.10 1.26 1.15 1.13 1.11 1.10
(0.43) (0.21) (0.16) (0.11) (0.01) (0.28) (0.15) (0.11) (0.08) (0.00)
20% 1.22 1.13 1.12 1.11 1.10 1.17 1.12 1.11 1.10 1.10
(0.27)  (0.15) (0.11) (0.08) (0.00) (0.19) (0.10) (0.08) (0.06) (0.00)
30% 1.16 1.11 1.10 1.09 1.09 1.11 1.08 1.08 1.07 1.08
(0.21) (0.12)  (0.09) (0.06) (0.00) (0.14) (0.08) (0.06) (0.04) (0.00)
Infeasible Using true dmin,t
cut-off value 1.22 1.13 1.12 1.11 1.10 1.15 1.11 1.11 1.10 1.10
24% (0.27)  (0.14) (0.11) (0.08) (0.00) (0.18) (0.10) (0.08) (0.05) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 42% 36% 34% 32% 22% 36% 31% 30% 28% 20%
1.13 1.10 1.10 1.10 1.10 1.12 1.10 1.10 1.10 1.10
(0.19) (0.11)  (0.09) (0.06) (0.00) (0.14) (0.09) (0.07) (0.05) (0.00)
Bmax = 1/ gmax,T
1.12 1.11 1.11 1.10 1.09 1.09 1.09 1.09 1.09 1.09

(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.04) (0.01)

Notes: The DGP follows the Pareto tail distribution given by (S.14) with 8 = 1.1. dpin,+ denotes the
assumed lower bound for the Pareto distribution. The cut-off value refers to the percentage of the
largest observations (sorted in descending order) that are assumed to follow the Pareto distribution.
The infeasible cut-off value is computed by assuming the true value of dpin ¢ is known. All estimates are
averaged across 2, 000 replications.
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Table S.18: Estimates of the shape parameter, 5, of the power law and inverse of the
exponent, 0.y, under Pareto DGP when § = 1.2

100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG 1)
cut-off value
10% 1.33 1.23 1.21 1.20 1.20 1.32 1.24 1.22 1.21 1.20
(0.60) (0.32) (0.24) (0.17) (0.01) (0.42) (0.23) (0.17) (0.12) (0.01)
20% 1.25 1.21 1.20 1.20 1.20 1.26 1.22 1.21 1.20 1.20
(0.40) (0.22) (0.17) (0.12) (0.01) (0.28) (0.16) (0.12) (0.08) (0.00)
30% 1.22 1.20 1.19 1.19 1.20 1.23 1.20 1.20 1.19 1.20
(0.31) (0.18) (0.14) (0.10) (0.00) (0.22) (0.13) (0.10) (0.07) (0.00)
Infeasible Using true dmin,t
cut-off value 1.26 1.21 1.20 1.20 1.20 1.26 1.22 1.21 1.20 1.20
24% (0.42) (0.23) (0.18) (0.12) (0.01) (0.29) (0.16) (0.13) (0.09) (0.00)
Assumed Maximum Likelihood Estimation (BMLE>
cut-off value
10% 1.49 1.28 1.25 1.22 1.20 1.37 1.25 1.23 1.21 1.20
(0.47) (0.23) (0.18) (0.12) (0.01) (0.31) (0.16) (0.12) (0.09) (0.00)
20% 1.33 1.24 1.22 1.21 1.20 1.27 1.22 1.21 1.20 1.20
(0.30) (0.16) (0.12)  (0.09) (0.00) (0.20) (0.11) (0.09) (0.06) (0.00)
30% 1.25 1.20 1.18 1.18 1.17 1.20 1.17 1.17 1.16 1.17
(0.23) (0.13) (0.10) (0.07) (0.00) (0.15) (0.09) (0.07) (0.05) (0.00)
Infeasible Using true dmin,t
cut-off value 1.35 1.24 1.22 1.21 1.20 1.27 1.22 1.21 1.20 1.20
24% (0.32) (0.17) (0.13)  (0.09) (0.00) (0.21) (0.12) (0.09) (0.06) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 40% 34% 32% 29% 20% 35% 30% 28% 26% 18%
1.22 1.20 1.20 1.20 1.20 1.22 1.20 1.20 1.20 1.20
(0.21) (0.13) (0.10) (0.07) (0.00) (0.16) (0.10) (0.08) (0.05) (0.00)
Bmax = 1/ Smax,T
1.20 1.19 1.19 1.19 1.18 1.17 1.17 1.17 1.17 1.18
(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.03) (0.01)

Notes: The DGP follows the Pareto tail distribution given by (S.14) with g = 1.2.

Table S.17.
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