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1 Introduction

Standard economic theory assumes that people use information about their own abilities solely

for instrumental purposes: to make better decisions. If so, they should acquire and process

information as dispassionate Bayesians. Anecdotal evidence suggests, however, that people may

also simply want to hold favorable beliefs about themselves. For example, social psychologists

point out that people systematically rate their own ability as “above average.” In one widely

cited example, 88% of US drivers consider themselves safer than the median driver.1

Motivated by such facts, a rapidly growing literature has modeled how agents manage

their self confidence. Yet economists have – with a few notable exceptions (Akerlof and Dickens

1982, Brunnermeier and Parker 2005) – been reluctant to embrace non-Bayesian updating. For

example, Benabou and Tirole (2002) model selective recall and Koszegi (2006) models selective

information acquisition, but both papers retain Bayes’ rule. This reluctance may stem in part

from criticism of the original evidence from social psychology, which is based on cross-sectional

survey data. Zábojńık (2004) and Benoit and Dubra (2011) show that Bayesian updating can

generate highly skewed belief distributions. For example, if there are equally many safe and

unsafe drivers and only unsafe drivers have accidents, then a majority of drivers — the good

drivers and the bad drivers who have not yet had accidents — will rate themselves safer than

average. People might also disagree on the definition of what constitutes a safe driver (Santos-

Pinto and Sobel 2005) or tend to (rationally) choose activities for which they over-rate their

abilities (Van den Steen 2004).2

Our first contribution is to test for non-Bayesian updating directly using experimental

data on changes in beliefs, thus avoiding criticisms of earlier studies that observed only levels

of beliefs. Specifically, we conduct a large-scale experiment with 656 undergraduate students

in which we track their beliefs about their performance on an IQ quiz. We focus on IQ as it

is a belief domain in which decision-making and ego may conflict. We track subjects’ beliefs

about scoring in the top half of performers, which allows us to summarize the relevant belief

distribution in a single number, the subjective probability of being in the top half. This

in turn allows us to elicit beliefs incentive-compatibly using a novel probabilistic crossover

method: we ask subjects for what value of x they would be indifferent between receiving a

payoff with probability x and receiving a payoff if their score is among the top half. Unlike

the widely-used quadratic scoring rule this mechanism is robust to risk aversion (and even to

1Svenson (1981), Englmaier (2006) and Benoit and Dubra (2011) review evidence on over-confidence.
2Evidence from psychology of “attribution biases” has two limitations in this regard: attribution per se

does not require learning, and much of the evidence provided for attribution bias is potentially consistent with
Bayesian updating due to ambiguities in the experimental designs (Ajzen and Fishbein 1975, Wetzel 1982).
Section 4.4 discusses these issues in greater depth.
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non-standard preferences provided subjects prefer a higher chance of winning a fixed prize).3

We elicit beliefs after the quiz and then repeatedly after providing subjects with informative

but noisy feedback in the form of signals indicating whether they scored in the top half, which

are correct with 75% probability. We then compare belief updates in response to these signals

to the Bayesian benchmark. By unambiguously defining the probabilistic event of interest and

data generating process, and then isolating changes in beliefs, we eliminate the confounds that

have limited earlier analyses.

Our first main finding is that updating is consistent with the basic structure of Bayes’ rule.

In particular, updating is invariant in the sense that the change in (an appropriate function of)

beliefs depends only on the information received. Subjects’ priors are also sufficient statistics

for posteriors with respect to past signals, implying that the priors fully summarize what

subjects have learned. Together invariance and sufficiency imply that the evolution of beliefs

µt in response to signals {st} can be written as

f(µt)− f(µt−1) = g(st) (1)

for appropriate functions f, g. To the best of our knowledge, it has never been previously

tested whether updating is consistent with this basic structure of Bayes’ rule.

The second main result is that subjects exhibit large biases when incorporating new in-

formation into their beliefs. Put formally, g differs from that predicted by Bayes’ rule. Our

subjects are conservative, revising their beliefs by only 35% as much on average as unbiased

Bayesians with the same priors would. They are also asymmetric, revising their beliefs by

15% more on average in response to positive feedback than to negative feedback. Strikingly,

subjects who received two positive and two negative signals — and thus learned nothing —

ended up significantly more confident than they began.

While asymmetry clearly seems to be a bias, conservatism could arise if subjects simply

misunderstand probabilities and treat a “75% correct” signal as less informative than it is.4 To

assess whether the deviations from Bayes’ rule are biases and not merely mistakes we conduct

two tests. First, we show that agents who score well on our IQ quiz – and hence are arguably

3As Schlag and van der Weele (2009) discuss, this mechanism was also described by Allen (1987) and Grether
(1992) and has since been independently discovered by Karni (2009).

4It is well-known that Bayes’ rule is an imperfect positive model even when self-confidence is not at stake.
A large literature in psychology during the 1960s tested Bayes’ rule for ego-independent problems such as
predicting which urn a series of balls were drawn from; see Slovic and Lichtenstein (1971), Fischhoff and
Beyth-Marom (1983), and Rabin (1998) for reviews. See also Grether (1980), Grether (1992) and El-Gamal
and Grether (1995) testing whether agents use the “representativeness heuristic” proposed by Kahneman and
Tversky (1973). Charness and Levin (2005) test for reinforcement learning and the role of affect using revealed
preference data to draw inferences about how subjects update. Rabin and Schrag (1999) and Rabin (2002)
study the theoretical implications of specific cognitive forecasting and updating biases.
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cognitively more able – are as conservative (and asymmetric) as those who score poorly. Sec-

ond, we conduct a placebo experiment, structurally identical to our initial experiment except

that subjects report beliefs about the performance of a “robot” rather than their own perfor-

mance. Belief updating in this second experiment is significantly and substantially closer to

unbiased Bayesian, suggesting that the desire to manage self-confidence is an important driver

of updating biases.

Our third main finding is that subjects’ demand for information is also biased relative to

standard models. We measure demand for feedback by allowing subjects to bid for noiseless

information on their performance. Ten percent of our subjects are strictly averse to learning

their types, inconsistent with the hypothesis that they have only instrumental uses for informa-

tion. Moreover, less confident subjects are significantly more likely to be information-averse,

and this pattern is robust to instrumenting for confidence using exogenous variation generated

by our experimental design.

Overall our data depict agents as essentially Bayesian but with biased interpretations of

and demand for new information. This suggests a disciplined way for theorists to relax Bayes’

rule, allowing for these biases without wholly abandoning the structure imposed by Equation 1.

The second contribution of our paper is to develop this approach. We show that our empirical

results arise naturally in a simple theory of optimally biased Bayesian information processing.

We model an agent learning about her own ability, which can be either high or low. The

agent derives instrumental utility from making an investment decision that pays off only if her

type is high, as well as direct belief utility from thinking she is a high type. The model is

agnostic as to the source of this belief utility; it could reflect any of the various mechanisms

described in the literature.5 The tension between instrumental and belief utility gives rise to

an intuitive first-best: if the agent is of high ability then she would like to learn her type for

sure, while if she is a low type she would like to maintain an intermediate belief which is neither

too low (as that hurts her ego) nor too high (as she will make bad decisions). For example, a

mediocre driver might want to think of herself as likely to be a great driver, but not so likely

that she drops her car insurance.

Over time the agent receives informative signals and uses them to update her subjective

beliefs. Motivated by our experimental results, we assume she does so using Bayes’ rule but

allow her to adopt a potentially biased interpretation of signals. For example, a driver might

interpret the fact that she has not had an accident in two years as a stronger signal of her ability

than is warranted. Following Brunnermeier and Parker (2005), we consider the case where the

agent commits to a bias function at an initial stage that determines how she interprets the

5Self-confidence may directly enhance well-being (Akerlof and Dickens 1982, Caplin and Leahy 2001, Brun-
nermeier and Parker 2005, Koszegi 2006), compensate for limited self-control (Brocas and Carrillo 2000, Benabou
and Tirole 2002), or directly enhance performance (Compte and Postlewaite 2004).
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informativeness of subsequent signals.

The theory reveals a tight connection between the biases we observe in our experiment.

It is unsurprising that an agent with belief utility prefers to update asymmetrically, putting

relatively more weight on positive compared to negative information. Interestingly, she also

prefers to update conservatively, responding less to any type of information than an unbiased

Bayesian. The intuition is as follows: asymmetry increases the agent’s mean belief in her

ability in the low state of the world but also increases the variance of the low-type’s beliefs,

and thus the likelihood of costly investment mistakes. By also updating conservatively the

agent can reduce the variance of her belief distribution in the low state of the world. Finally,

the agent strictly prefers not to learn her type (is information-averse) when her confidence is

low as doing so would upset the careful balance between belief and decision utility.

While our main results characterize an agent’s optimal bias for a specific decision problem,

we also show that this bias is approximately optimal for other problems with different belief

and instrumental utilities. This robustness property makes it plausible that conservative and

asymmetric biases arise through a process of evolution, where nature selects optimal updating

behavior for a generic problem which the agent then applies to different specific problems

throughout her life.

Finally, the paper contributes to research on gender differences in confidence. A large

literature in psychology and a growing one in economics have emphasized that men tend

to be more (over-)confident than women, with important economic implications. There are

three possible sources for gender differences in confidence: they could be driven by gender

differences in priors, gender differences in updating about beliefs, or gender differences in

demand for information. Our experiment is designed to reveal which combination of these

factors is present. We find that women differ significantly in their priors, are significantly more

conservative updaters than men while not significantly more asymmetric, and significantly more

likely to be averse to feedback. These gender differences are consistent with our theoretical

framework if women disproportionately value belief utility.

The most closely related empirical work is by Eil and Rao (2011), who use the quadratic

scoring rule to repeatedly elicit beliefs about intelligence and beauty. Their findings on updat-

ing (agents’ posteriors are less predictable and less sensitive to signal strength after receiving

negative feedback) are not directly comparable with ours due to differences in the design of the

experiment and methods of analysis, but are broadly consistent with motivated information

processing. Their estimates of information demand match ours — subjects with low confidence

are averse to further feedback — though they treat confidence as exogenous.6

6In other related work, Charness, Rustichini and Jeroen van de Ven (2011) find that updating about own
relative performance is noisier than updating about objective events. Grossman and Owens (2010), using the
quadratic scoring rule and a smaller sample of 78 subjects, do not find evidence of biased updating about
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The rest of the paper is organized as follows. Section 2 describes the details of our experi-

mental design, and Section 3 summarizes the experimental data. Section 4 discusses economet-

ric methods and presents results for belief updating dynamics, and Section 5 presents results on

information acquisition behavior. Section 6 develops the model that allows us to organize the

experimental results in a unified manner. Section 7 discusses gender differences, and Section

8 is the conclusion.

2 Experimental Design and Methodology

The experiment consisted of four stages, which are explained in detail below. During the quiz

stage, each subject completed an online IQ test. We measured each subject’s belief about

being among the top half of performers both before the IQ quiz and after the IQ quiz. During

the feedback stage we repeated the following protocol four times. First, each subject received

a binary signal that indicated whether the subject was among the top half of performers

and was correct with 75% probability. We then measured each subject’s belief about being

among the top half of performers. Overall, subjects received four independent signals, and we

tracked subjects’ updated beliefs after each signal. In the information purchasing stage we

gave subjects the opportunity to purchase precise information about whether her performance

put her in the top half of all performers. A sub-sample of subjects were invited one month

later for a follow-up which repeated the feedback stage but with reference to the performance

of a robot rather than to their own performance.

2.1 Quiz Stage

Subjects had four minutes to answer as many questions as possible out of 30. Since the

experiment was web-based and different subjects took the test at different times, we randomly

assigned each subject to one of 9 different versions of the IQ test. Subjects were informed that

their performance would be compared to the performance of all other students taking the same

test version. The tests consisted of standard logic questions such as:

Question: Which one of the five choices makes the best comparison? LIVED is to

DEVIL as 6323 is to (i) 2336, (ii) 6232, (iii) 3236, (iv) 3326, or (v) 6332.

Question: A fallacious argument is (i) disturbing, (ii) valid, (iii) false, or (iv)

necessary?

absolute performance.
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A subject’s final score was the number of correct answers minus the number of incorrect

answers. Earnings for the quiz were the score multiplied by $0.25. During the same period

an unrelated experiment on social learning was conducted and the combined earnings of all

parts of all experiments were transferred to subjects’ university debit cards at the end of the

study. Since earnings were variable and not itemized (and even differed across IQ tests), it

would have been very difficult for subjects to infer their relative performance from earnings.

Types. We focus on subjects’ learning about whether or not they scored above the median

for their particular IQ quiz. Because these “types” are binary, a subject’s belief about her type

at any point in time is given by a single number, her subjective probability of being a high type.

This will prove crucial when devising incentives to elicit beliefs, and distinguishes our work from

much of the literature where only several moments of more complicated belief distributions are

elicited.7

2.2 Feedback Stage

Signal Accuracy. Signals were independent and correct with probability 75%: if a subject

was among the top half of performers, she would get a “Top” signal with probability 0.75 and a

“Bottom” signal with probability 0.25. If a subject was among the bottom half of performers,

she would get a Top signal with probability 0.25 and a Bottom signal with probability 0.75.

To explain the accuracy of signals over the web, subjects were told that the report on their

performance would be retrieved by one of two “robots” — “Wise Bob” or “Joke Bob.” Each

was equally likely to be chosen. Wise Bob would correctly report Top or Bottom. Joke Bob

would return a random report using Top or Bottom with equal probability. We explained that

this implied that the resulting report would be correct with 75% probability.

Belief elicitation. We used a novel crossover mechanism each time we elicited beliefs.

Subjects were presented with two options,

1. Receive $3 if their score was among the top half of scores (for their quiz version).

2. Receive $3 with probability x ∈ {0, 0.01, 0.02, ..., 0.99, 1}.

and asked for what value of x they would be indifferent between them. We then draw a random

number y ∈ {0, 0.01, 0.02, ..., 0.99, 1}. Subjects were paid $3 with probability y when y > x and

otherwise received $3 when their own score was among the top half of scores. To present this

mechanism in a simple narrative form, we told subjects that they were paired with a “robot”

who had a fixed but unknown probability y between 0 and 100% of scoring among the top half

7For example, Niederle and Vesterlund (2007) elicit the mode of subjects’ beliefs about their rank in groups
of 4.
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of subjects. Subjects could base their chance of winning $3 on either their own performance

or their robot’s, and had to indicate the threshold level of x above which they preferred to use

the robot’s performance. We explained to subjects that they would maximize their probability

of earning the $3 by choosing their own subjective probability of being in the top half as the

threshold. Subjects were told at the outset that we would elicit their beliefs several times but

would implement only one choice at random for payment.

To the best of our knowledge, ours is the first paper to implement the crossover mechanism

in an experiment.8 The crossover mechanism has two main advantages over the widely-used

quadratic scoring rule. First, quadratic scoring is truth-inducing only for risk-neutral sub-

jects;9 the crossover mechanism is strictly incentive-compatible provided only that subjects’

preferences are monotone in the sense that among lotteries that pay $3 with probability q

and $0 with probability 1 − q, they strictly prefer those with higher q. This property holds

for von-Neumann-Morgenstern preferences as well as for many non-standard models such as

Prospect Theory.

A second advantage of the crossover mechanism is that it does not generate perverse in-

centives to “hedge” performance on the quiz. Consider the incentives facing a subject who has

predicted that she will score in the top half with probability µ̂. Let S denote her score and S

the median score; F denotes her subjective beliefs about the latter. Under a quadratic scoring

rule she will earn a piece rate of $0.25 per point she scores and lose an amount proportional

to (IS≥S − µ̂)2, so her expected payoff as a function of S is

$0.25 · S − k ·
∫

S

(IS≥S − µ̂)2dF (S) (2)

for some k > 0. For low values of µ̂ this may be decreasing in S, generating incentives to

“hedge.” In contrast, her expected payoff under the crossover mechanism is

$0.25 · S + $3.00 · µ̂ ·
∫

S

IS≥SdF (S), (3)

which unambiguously increases with S. Intuitively, conditional on her own performance being

the relevant one (which happens with probability µ̂), she always wants to do the best she can.

8After running our experiment we became aware that the same mechanism was also independently discovered
by Allen (1987) and Grether (1992), and has since been proposed by Karni (2009).

9See Offerman, Sonnemans, Van de Kuilen and Wakker (2009) for an overview of the risk problem for scoring
rules and a proposed risk-correction. One can of course eliminate distortions entirely by not paying subjects,
but unpaid subjects tend to report inaccurate and incoherent beliefs (Grether 1992).
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2.3 Information Purchasing Stage

In the final stage of the experiment we elicited subjects’ demand for noiseless feedback on their

relative performance. Subjects stated their willingness to pay for receiving $2 as well as for

receiving $2 and an email containing information on their performance. We bounded responses

between $0.00 and $4.00. We offered two kinds of information: subjects could learn whether

they scored in the top half, or learn their exact quantile in the score distribution.10 For each

subject one of these choices was randomly selected and the subject purchased the corresponding

bundle if and only if their reservation price exceeded a randomly generated price. This design

is a standard application of the Becker-DeGroot-Marschak mechanism (BDM) except that we

measure information values by netting out subjects’ valuations for $2 alone from their other

valuations to address the concern that subjects may under-bid for objective-value prizes.

2.4 Follow-up Stage

We invited a random sub-sample of subjects by email to a follow-up experiment one month

later. Subjects were told they had been paired with a robot who had a probability θ of being

a high type. We then repeated the feedback stage of the experiment except that this time

subjects received signals of the robot’s ability and we tracked their beliefs about the robot

being a high type.

The purpose of this follow-up was to compare subjects’ processing of information about

a robot’s ability as opposed to their own ability. To make this comparison as effective as

possible we matched experimental conditions in the follow-up as closely as possible to those in

the baseline. We set the robot’s initial probability of being a high type, θ, to the multiple of

5% closest to the subject’s post-IQ quiz confidence. For example, if the subject had reported

a confidence level of 63% after the quiz we would pair the subject with a robot that was a high

type with probability θ = 65%. We then randomly picked a high or low type robot for each

subject with probability θ. If the type of the robot matched the subject’s type in the earlier

experiment then we generated the same sequence of signals for the robot. If the types were

different, we chose a new sequence of signals. In either case, signals were correctly distributed

conditional on the robot’s type.

10We also elicited demands for receiving this information publicly via a website. Interestingly, a large majority
of students strictly preferred to receive information privately. We focus in our analysis on valuations for private
feedback.
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3 Data

3.1 Subject Pool

The experiment was conducted in April 2005 as part of a larger sequence of experiments at

a large private university with an undergraduate student body of around 6,400. A total of

2,356 students signed up in November 2004 to participate in this series of experiments by

clicking a link on their home page on www.facebook.com, a popular social networking site.11

These students were invited by email to participate in the belief updating study, and 1,058

of them accepted the invitation and completed the experiment online. The resulting sample

is 45% male and distributed across academic years as follows: 26% seniors, 28% juniors, 30%

sophomores, and 17% freshmen. Our sample includes about 33% of all sophomores, juniors,

and seniors enrolled during the 2004–2005 academic year, and is thus likely to be unusually

representative of the student body as a whole.

An important issue with an online experiment is how well subjects understood and were

willing to follow instructions. In anticipation of this issue our software required subjects to

make an active choice each time they submitted a belief and allowed them to report beliefs

clearly inconsistent with Bayesian updating, such as updates in the wrong direction and neutral

updates (reporting the same belief as in the previous round). After each of the 4 signals, a

stable proportion of about 36% of subjects reported the same belief as in the previous round.12

About 16% of subjects did not change their beliefs at all during all four rounds of the feedback

stage. In contrast, the share of subjects who updated in the wrong direction declined over time

(13%, 9%, 8% and 7%), and most subjects made at most one such mistake.13 Our primary

analysis uses the restricted sample of subjects who made no updates in the wrong direction

and revised their beliefs at least once. These restrictions exclude 25% and 13% of our sample,

respectively, and leave us with 342 women and 314 men. While they potentially bias us against

rejecting Bayes’ rule, and in particular against finding evidence of conservatism, we implement

them to ensure that our results are not driven by subjects who misunderstood or ignored

the instructions. Our main conclusions hold on the full sample as well and we provide those

estimates as robustness checks where appropriate.

To preview overall updating patterns, Figure 1 plots the empirical cumulative distribution

function of subjects’ beliefs both directly after the quiz and after four rounds of updating.

Updating yields a flatter distribution as mass shifts towards 0 (for low types) and 1 (for high

11In November 2004 more than 90% of students were members of the site and at least 60% of members logged
into the site daily.

12The exact proportions were 36%, 39%, 37% and 36% for the four rounds, respectively.
13Overall, 19% of subjects made only one mistake, 6% made two mistake, 2% made 3 mistakes and 0.4%

made 4 mistakes.
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Figure 1: Belief Distributions
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types). Note that the distribution of beliefs is reasonably smooth and not merely bunched

around a few focal numbers. This provides some support for the idea that the crossover

elicitation method generates reasonable answers.14

We invited 120 subjects to participate in the follow-up stage one month later, and 78

completed this final stage of the experiment. The pattern of wrong and neutral moves was

similar to the first stage of the experiment. Slightly fewer subject made neutral updates (28%

of all updates) and 10% always made neutral updates. Slightly more subjects made wrong

updates (22% made one mistake, 10% made two mistakes, 5% made three mistakes and 3%

made 4 mistakes). The restricted sample for the follow-up has 40 subjects.

3.2 Quiz Scores

The mean score of the 656 subjects was 7.4 (s.d. 4.8), generated by 10.2 (s.d. 4.3) correct

answers and 2.7 (s.d. 2.1) incorrect answers. The distribution of quiz scores (number of correct

answers minus number of incorrect answers) is approximately normal, with a handful of outliers

who appear to have guessed randomly. The most questions answered by a subject was 29, so

14Hollard, Massoni and Vergnaud (2010) compare beliefs obtained using several elicitation procedures and
show that using the crossover procedure results in the smoothest distribution of beliefs.
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the 30-question limit did not induce bunching at the top of the distribution. Table A-1 in the

supplementary appendix provides further descriptive statistics broken down by gender and by

quiz type. An important observation is that the 9 versions of the quiz varied substantially in

difficulty, with mean scores on the easiest version (#6) fives time higher than on the hardest

version (#5). Subjects who were randomly assigned to harder quiz versions were significantly

less confident that they had scored in the top half after taking the quiz, presumably because

they attributed some of their difficulty in solving the quiz to being a low type.15 We will

exploit this variation below, using quiz assignment as an instrument for beliefs.

4 Information Processing

We next compare subjects’ observed belief updating to the Bayesian benchmark. On a basic

level they differ starkly: if we regress subjects’ logit-beliefs on those predicted by Bayes’ rule

we estimate a correlation of 0.57, significantly different from unity. This approach does not

identify the precise ways in which Bayes rule succeeds or fails to predict updating, however,

and thus cannot disentangle the different properties it embodies. We therefore proceed by

characterizing those properties and specifying empirical models that will enable us to test

them.

As a convention, we will denote Bayesian belief at time t after receiving the tth signal with

µt and the agent’s corresponding subjective (possibly non-Bayesian) belief with µ̂t. For the

case of binary signals (as in our experiment), we can write Bayes rule in terms of the logistic

function as

logit(µt) = logit(µt−1) + I(st = H)λH + I(st = L)λL (4)

where I(st = H) is an indicator for whether the tth signal was “High”, λH is the log likelihood

ratio of a high signal, and so on. In our experiment we have λH = −λL = ln(3).

Note first that Bayes rule satisfies invariance in the sense that the change in (logit) beliefs

depends only on past signals. Formally, we call an updating process invariant if we can write

logit(µ̂t)− logit(µ̂t−1) = gt(st, st−1, . . .) (5)

for some sequence of functions gt that do not depend on µ̂t−1. Next, Bayes’ rule implies that

the posterior µ̂t−1 is a sufficient statistic for information received prior to t, so that we can write

gt(st, st−1, . . .) = gt(st). Morever this relationship is stable across time, so that gt = g for all t.

We think of these three properties – invariance, sufficiency and stability – as defining the core

structure of Bayesian updating; they greatly reduce the potential complexity of information

15Moore and Healy (2008) document a similar pattern.
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processing. Any updating process that satisfies them in our setting can be fully characterized

by two parameters, since with binary signals g(st) can take on at most two values. We therefore

write

g(st) = I(st = H)βHλH + I(st = L)βLλL (6)

The parameters βH and βL describe the responsiveness of the agent relative to a Bayesian

updater, for whom βH = βL = 1.

Our empirical model nests Bayesian updating and allows us to test for the core properties

of Bayesian updating (invariance, sufficiency and stability) as well measure the responsiveness

to positive and negative information. The simplest version is:

logit(µ̂it) = δlogit(µ̂i,t−1) + βHI(sit = H)λH + βLI(sit = L)λL + ǫit (7)

The coefficient δ equals 1 if the invariance property holds, while the coefficients βH and βL

capture responsiveness to positive and negative information, respectively. The error term ǫit

captures unsystematic errors that subject i made when updating her belief at time t. Note that

we do not have to include a constant in this regression because I(sit = H) + I(sit = L) = 1.

To test for stability we estimate (7) separately for each of our four rounds of updating and

test whether our coefficient estimates vary across rounds. Finally, to examine whether prior

beliefs are a sufficient statistic we augment the model with indicators I(si,t−τ = H) for lagged

signals on the right-hand side:

logit(µ̂it) = δlogit(µ̂i,t−1) + βHI(sit = H)λH + βLI(sit = L)λL

+

t−1∑

τ=1

βt−τ [I(si,t−τ = H)λH + I(si,t−τ = L)λL] + ǫit (8)

Sufficiency predicts that the lagged coefficients βt−τ are zero.

Identifying (7) and (8) is non-trivial because we include lagged logit-beliefs (that is, priors)

as a dependent variable. If there is unobserved heterogeneity in subjects’ responsiveness to

information, βL and βH , then OLS estimation may yield upwardly biased estimates of δ due

to correlation between the lagged logit-beliefs and the unobserved components βiL − βL and

βiH −βH in the error term. Removing individual-level heterogeneity through first-differencing

or fixed-effects estimation does not solve this problem but rather introduces a negative bias

(Nickell 1981). In addition to these issues, there may be measurement error in self-reported

logit-beliefs because subjects make mistakes or are imprecise in recording their beliefs.16

16See Arellano and Honore (2001) for an overview of the issues raised in this paragraph. Instrumental
variables techniques have been proposed that use lagged difference as instruments for contemporaneous ones
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To address these issues we exploit the fact that subjects’ random assignment to different

versions of the IQ quiz generated substantial variation in their post-quiz beliefs. This allows

us to construct instruments for lagged prior logit-beliefs. For each subject i we calculate

the average quiz score of subjects other than i who took the same quiz variant to obtain a

measure of the quiz difficulty level that is not correlated with subject i’s own ability but highly

correlated with the subject’s beliefs. We report both OLS and IV estimates of Equation 7.

4.1 Invariance, Sufficiency and Stability

Table 1 presents round-by-round and pooled estimates of Equation 7.17 Estimates in Panel A

are via OLS and those in Panel B are via IV using quiz type indicators as instruments. The

F -statistics reported in Panel B indicate that our instrument is strong enough to rule out weak

instrument concerns (Stock and Yogo 2002).

Result 1 (Invariance) Subjects’ updating behavior is invariant to their prior.

Invariance implies that the change in (logit) beliefs should not depend on the prior, or equiv-

alently, that the responsiveness to positive and negative information is not a function of the

prior. This implies that a coefficient δ = 1 on prior logit-beliefs in Equation 7. The OLS

estimate is close to but significantly less than unity; although it climbs by round, we fail to

reject equality with one only in Round 4 (p = 0.57). These estimates may be biased upward

by heterogeneity in the responsiveness coefficients, βiL and βiH , or may be biased downwards

if subjects report beliefs with noise. The IV estimates suggest that the latter bias is more im-

portant: the pooled point estimate of 0.963 is larger and none of the estimates are significantly

different from unity.

Of course, it is possible that both βH and βL are functions of prior logit-beliefs but that the

effects cancel out to give an average estimate of δ = 1. To address this possibility, Table A-3

reports estimates of an augmented version of Equation 7 that includes an interaction between

the (logit) prior and the high signal I(sit = H). Invariance requires that the coefficient δH

on this interaction is zero; our estimated δH varies in sign across rounds and is significant at

the 5% level only once, in the OLS estimate for Round 1. It is small and insignificant in our

pooled estimates using both OLS and by IV. All told, subjects’ updating appears invariant.

(see, for example, Arellano and Bond (1991)); these instruments would be attractive here since the theory clearly
implies that the first lag of beliefs should be a sufficient statistic for the entire preceding sequence of beliefs,
but unfortunately higher-order lags have little predictive power when the autocorrelation coefficient δ is close
to one, as Bayes’ rule predicts.

17The logit function is defined only for priors and posteriors in (0, 1); to balance the panel we further restrict
the sample to subjects i for whom this holds for all rounds t. Results using the unbalanced panel, which includes
another 101 subject-round observations, are essentially identical.
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Table 1: Conservative and Asymmetric Belief Updating

Regressor Round 1 Round 2 Round 3 Round 4 All Rounds Unrestricted

Panel A: OLS
δ 0.814 0.925 0.942 0.987 0.924 0.888

(0.030)∗∗∗ (0.015)∗∗∗ (0.023)∗∗∗ (0.022)∗∗∗ (0.011)∗∗∗ (0.014)∗∗∗

βH 0.374 0.295 0.334 0.438 0.370 0.264
(0.019)∗∗∗ (0.017)∗∗∗ (0.021)∗∗∗ (0.030)∗∗∗ (0.013)∗∗∗ (0.013)∗∗∗

βL 0.295 0.274 0.303 0.347 0.302 0.211
(0.025)∗∗∗ (0.020)∗∗∗ (0.022)∗∗∗ (0.024)∗∗∗ (0.012)∗∗∗ (0.011)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.009 0.408 0.305 0.017 0.000 0.000
N 612 612 612 612 2448 3996
R2 0.803 0.890 0.875 0.859 0.854 0.798

Panel B: IV
δ 0.955 0.882 1.103 0.924 0.963 0.977

(0.132)∗∗∗ (0.088)∗∗∗ (0.125)∗∗∗ (0.124)∗∗∗ (0.059)∗∗∗ (0.060)∗∗∗

βH 0.407 0.294 0.332 0.446 0.371 0.273
(0.044)∗∗∗ (0.017)∗∗∗ (0.023)∗∗∗ (0.035)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗

βL 0.254 0.283 0.273 0.362 0.294 0.174
(0.042)∗∗∗ (0.026)∗∗∗ (0.030)∗∗∗ (0.040)∗∗∗ (0.017)∗∗∗ (0.027)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.056 0.725 0.089 0.053 0.001 0.004
First Stage F -statistic 13.89 16.15 12.47 12.31 16.48 20.61
N 612 612 612 612 2448 3996
R2 - - - - - -

Notes:

1. Each column in each panel is a regression. The outcome in all regressions is the log posterior odds ratio. δ is the coefficient on the log prior
odds ratio; βH and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. Bayesian updating
corresponds to δ = βH = βL = 1.

2. Estimation samples are restricted to subjects whose beliefs were always within (0, 1). Columns 1-5 further restrict to subjects who updated
their beliefs at least once and never in the wrong direction; Column 6 includes subjects violating this condition. Columns 1-4 examine updating
in each round separately, while Columns 5-6 pool the 4 rounds of updating.

3. Estimation is via OLS in Panel A and via IV in Panel B, using the average score of other subjects who took the same (randomly assigned)
quiz variety as an instrument for the log prior odds ratio.

4. Heteroskedasticity-robust standard errors in parenthesis; those in the last two columns are clustered by individual. Statistical significance is
denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Result 2 (Sufficiency) Controlling for prior beliefs, lagged information does not significantly

predict posterior beliefs.

Priors appear to be fully incorporated into posteriors – but do they fully capture what

subjects have learned in the past? Table 2 reports instrumental variables estimates of Equa-

tion 8, which includes lagged signals as predictors. We can include one lag in round 2, two

lags in round 3, and three lags in round 4. None of the estimated coefficients are statisti-

cally or economically significant, supporting the hypothesis that priors properly encode past

information.

Result 3 (Stability) The structure of updating is largely stable across rounds.

We test for stability by comparing the coefficients δ, βH , and βL across rounds. Our

(preferred) IV estimates in Table 1 show some variation but without an obvious trend. Wald

tests for heterogeneous coefficients are mixed; we reject the null of equality for βH (p < 0.01)

but not for βL (p = 0.24) or for δ (p = 0.52). We view these results as suggestive but worth

further investigation.

4.2 Conservatism and Asymmetry

Result 4 (Conservatism) Subjects respond less to both positive and negative information

than an unbiased Bayesian.

The OLS estimates of βH and βL reported in Table 1, 0.370 and 0.302, are substantially

and significantly less than unity. Round-by-round estimates do not follow any obvious trend.

The IV and OLS estimates are similar, suggesting there is limited bias in the latter through

correlation with lagged prior beliefs.

To ensure that this result is not merely an artifact of functional form, Figure 2 presents

a complementary non-parametric analysis of conservatism. The figure plots the mean belief

revision in response to a Top and Bottom signal by decile of prior belief in being a top half

type for each of the four observations of the 656 subjects, with the average Bayesian response

plotted alongside for comparison. Belief revisions are consistently smaller than those those

implied by Bayes rule across essentially all of these categories.

Result 5 (Asymmetry) Controlling for prior beliefs, subjects respond more to positive than

to negative signals.

To quantify asymmetry we compare estimates of βH and βL, the responsiveness to positive

and negative signals, from Table 1. The difference βH − βL is consistently positive across
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Table 2: Priors are Sufficient for Lagged Information

Regressor Round 2 Round 3 Round 4

δ 0.872 1.124 0.892
(0.100)∗∗∗ (0.158)∗∗∗ (0.152)∗∗∗

βH 0.284 0.348 0.398
(0.023)∗∗∗ (0.031)∗∗∗ (0.041)∗∗∗

βL 0.284 0.272 0.343
(0.028)∗∗∗ (0.031)∗∗∗ (0.028)∗∗∗

β−1 0.028 -0.027 0.045
(0.037) (0.051) (0.051)

β−2 -0.036 0.067
(0.052) (0.055)

β−3 0.057
(0.058)

N 612 612 612
R2 - - -

Each column is a regression. The outcome in all regressions is the log posterior odds ratio. Estimated coefficients

are those on the log prior odds ratio (δ), the log likelihood ratio for positive and negative signals (βH and βL),

and the log likelihood ratio of the signal received τ periods earlier (β−τ ). The estimation sample includes

subjects whose beliefs were always within (0, 1) and who updated their beliefs at least once and never in the

wrong direction. Estimation is via IV using the average score of other subjects who took the same (randomly

assigned) quiz variety as an instrument for the log prior odds ratio. Heteroskedasticity-robust standard errors

in parenthesis. Statistical significance is denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure 2: Conservatism
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Mean belief revisions broken down by decile of prior belief in being of type “Top.” Responses to positive and
negative signals are plotted separately in the top and bottom halves, respectively. The corresponding means
that would have been observed if all subjects were unbiased Bayesians are provided for comparison. T-bars
indicate 95% confidence intervals.

all rounds and significantly different from zero in the first round, fourth round, and for the

pooled specification. While estimates of this difference in Rounds 2 and 3 are not significantly

different from zero, we cannot reject the hypothesis that the estimates are equal across all four

rounds (p = 0.32). The IV estimates are somewhat more variable but are again uniformly

positive, and significantly so in Rounds 1 and 4 and in the pooled specification. The size of the

difference is substantial, implying that the effect of receiving both a positive and a negative

signal (that is, no information) is 26% as large as the effect of receiving only a positive signal.18

Figure 3 presents the analogous non-parametric analysis; it compares subjects whose prior

belief was µ̂ and who received positive feedback with subjects whose prior belief was 1− µ̂ and

who received negative feedback. According to Bayes’ rule, the magnitude of the belief change

in these situations should be identical. Instead subjects consistently respond more strongly

to positive feedback across deciles of the prior. As an alternative non-parametric test we can

also examine the net change in beliefs among the 224 subjects who received two positive and

18Table A-2 in the supplementary appendix shows that the results of the regression continue to hold when
we pool all four rounds of observation, even when we eliminate all observations in which subjects do not change
their beliefs. That is, the effect is not driven by an effect of simply not updating at all.
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Figure 3: Asymmetry
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two negative signals. These subjects should have ended with the same beliefs as they began;

instead their beliefs increased by an average of 4.8 points (p < 0.001).

To summarize, Bayes’ rule seems to do a good job of describing the basic structure of

updating, but an imperfect job predicting how subjects weigh new information. These patterns

motivate the modeling approach we lay out in Section 6 below. Note also that deviations from

Bayes’ rule were costly within the context of the experiment. Comparing expected payoffs given

observed updating (πactual) to those subjects’ would have earned if they updated using Bayes’

rule (πBayes) or if they did not update at all (πnoupdate), we find that the ratio
πBayes−πactual

πBayes−πnoupdate

is 0.59. Non-Bayesian updating behavior thus cost subjects 59% of the potential gains from

processing information within the experiment.

4.3 Confidence Management or Cognitive Mistakes?

Our data suggest that subjects update like Bayesians but with conservative and asymmet-

ric biases. While asymmetry seems to reflect motivation, conservatism could plausibly be a

cognitive failing. Conservatism might arise, for example, if subjects simply misinterpret the in-

formativeness of signals and believe that the signal is only correct with 60% probability instead
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Table 3: Heterogeneity in Updating

(a) Heterogeneity by Ability

Regressor OLS IV

δ 0.918 0.966
(0.015)∗∗∗ (0.075)∗∗∗

δAble 0.010 -0.002
(0.022) (0.138)

βH 0.381 0.407
(0.026)∗∗∗ (0.050)∗∗∗

βL 0.317 0.296
(0.016)∗∗∗ (0.034)∗∗∗

βAble
H -0.017 -0.048

(0.030) (0.054)

βAble
L -0.041 -0.011

(0.025) (0.049)

N 2448 2448
R2 0.854 -

(b) Heterogeneity by Gender

Regressor OLS IV

δ 0.925 0.988
(0.015)∗∗∗ (0.103)∗∗∗

δMale -0.007 -0.047
(0.023) (0.125)

βH 0.331 0.344
(0.017)∗∗∗ (0.031)∗∗∗

βL 0.280 0.258
(0.015)∗∗∗ (0.040)∗∗∗

βMale
H 0.080 0.063

(0.027)∗∗∗ (0.038)∗

βMale
L 0.052 0.073

(0.026)∗∗ (0.044)∗

N 2448 2448
R2 0.855 -

Each column is a separate regression. The outcome in all regressions is the log belief ratio. δ, βH , and βL are

the estimated effects of the prior belief and log likelihood ratio for positive and negative signals, respectively.

δj , βj

H , and β
j

L are the differential responses attributable to being male (j = Male) or high ability (j = Able).

Robust standard errors clustered by individual reported in parentheses. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

of 75%. Subjects might underweight signals in this way because they are used to encountering

weaker ones in everyday life.

We present two pieces of evidence that suggest that cognitive errors are not the driving

factor. First, we show that conservatism (and asymmetry) do not correlate with the cognitive

ability of participants. Specifically, we assess whether biases are present both among high

performers (those that score in the top half) and low performers on the IQ quiz. Table 3a

reports estimates of Equation 7 differentiated by ability. We find no evidence that more able

(higher performing) participants update differently than less able participants: they do not

differ in the way they weight their priors or in the way they incorporate positive and negative

signals. This suggests that cognitive errors are not the main factor behind conservatism.

The second analysis that helps distinguish motivated behavior from a cognitive errors

interpretation is to examine the results of the follow-up experiment, in which a random subset

of subjects performed an updating task that was formally identical to the one in the original

experiment, but which dealt with the ability of a robot rather than their own ability. For these

20



Table 4: Belief Updating: Own vs. Robot Performance

Regressor I II III

βH 0.426 0.349 0.252
(0.087)∗∗∗ (0.066)∗∗∗ (0.043)∗∗∗

βL 0.330 0.241 0.161
(0.050)∗∗∗ (0.042)∗∗∗ (0.033)∗∗∗

βRobot
H 0.362 0.227 0.058

(0.155)∗∗ (0.116)∗ (0.081)

βRobot
L 0.356 0.236 -0.006

(0.120)∗∗∗ (0.085)∗∗∗ (0.089)

P(βH + βRobot
H = 1) 0.128 0.000 0.000

P(βL + βRobot
L = 1) 0.004 0.000 0.000

P(βH = βL) 0.302 0.118 0.039
P(βH + βRobot

H = βL + βRobot
L ) 0.454 0.316 0.030

N 160 248 480
R2 0.567 0.434 0.114

Each column is a separate regression. The outcome in all regressions is the change in the log belief ratio. βH

and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. βRobot
H

and βRobot
L are the differential response attributable to obtaining a signal about the performance of a robot

as opposed to about one’s own performance. Estimation samples are restricted to subjects who participated

in the follow-up experiment and observed the same sequence of signals as in the main experiment. Column I

includes only subjects who updated at least once in the correct direction and never in the wrong direction in

both experiments. Column II adds subjects who never updated their beliefs. Column III includes all subjects.

Robust standard errors clustered by individual reported in parentheses. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

subjects we pool the updating data from both experiments and estimate:

logit(µ̂e
it)− logit(µ̂e

it) = βH · I(sit = H)λH + βL · I(sit = L)λL +

+βRobot
H · 1(e = Robot) · I(sit = H)λH + βRobot

L · 1(e = Robot) · I(sit = L)λL + ǫti (9)

Here, e indexes experiments (Ego or Robot), so that the interaction coefficients βRobot
H and

βRobot
L tell us whether subjects process identical information differently across both treatments.

Given the smaller sample available we impose δ = 1 and estimate via OLS. Table 4 reports

results.

Result 6 Conservatism is significantly reduced when subjects learn about a robot’s performance

rather than their own performance.

The baseline coefficients βH and βL are similar to their estimated values for the larger sample

(see Table 1), suggesting that participation in the follow-up was not selective on updating
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traits. The interaction coefficients are both positive and significant — they imply that sub-

jects are roughly twice as responsive to feedback when it concerns a robot’s performance as

they are when it concerns their own performance. In fact, we cannot reject the hypothesis

that βH + βRobot
H = 1 (p = 0.13), though we can still reject βL + βRobot

L = 1 (p = 0.004).

While conservatism does not entirely vanish, it is clearly much weaker. Interestingly, sub-

jects are also less asymmetric in relative terms when they update about robot performance
(
βH

βL
>

βH+βRobot
H

βL+βRobot
L

)

. We cannot reject the hypothesis that they update symmetrically about

robot performance such that βH + βRobot
H = βL + βRobot

L (p = 0.45).

4.4 Discussion

We next interpret our updating results in relation to earlier work on information processing

and self-confidence.

Memory. While the invariance property of Bayes rule implies that information incorpo-

rated into beliefs persists, other models have examined the implications of imperfect mem-

ory for learning (Mullainathan 2002, Benabou and Tirole 2002, Wilson 2003, Gennaioli and

Shleifer 2010). Our experiment was intentionally designed to minimize forgetfulness by com-

pressing updating into a short time period; thus it is not surprising that we find subjects’ priors

are persistent after accounting for measurement error. This does not rule out forgetfulness over

longer periods.

Attribution bias. Social psychologists have argued that people exhibit self-serving “at-

tribution biases,” or tendencies to take credit for good outcomes and deny blame for bad ones.

Though these studies are sometimes cited as evidence of biased information processing, this is

potentially misleading since attributions are possible without updating, and indeed without any

uncertainty at all. To illustrate, consider the prototypical experimental paradigm in which sub-

jects taught a student and then attributed the student’s subsequent performance either to their

teaching or to other factors. A common finding is that subjects attribute poor performances

to lack of student effort, while taking credit for good performances. This is clearly consistent

with the fixed beliefs that (a) student effort and teacher ability are complementary and (b)

the teacher is capable. More generally, psychologists themselves have argued that attribution

bias studies “seem readily interpreted in information-processing terms” (Miller and Ross 1975,

p. 224) either because the data-generating processes were not clearly defined (Wetzel 1982) or

because key outcome variables were not objectively defined or elicited incentive-compatibly.19

19For example, Wolosin, Sherman and Till (1973) had subjects place 100 metal washers on three wooden dowels
according to the degree to which they felt that they, their partner, and the situation were “responsible” for the
outcome. Santos-Pinto and Sobel (2005) show that if agents disagree over the interpretation of concepts like
“responsibility,” this can generate positive self-image on average, and conclude that “there is a parsimonious way
to organize the findings that does not depend on assuming that individuals process information irrationally...”
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To make progress relative to this literature we (1) clearly define the probabilistic event

(scoring in the top half) and outcome variables (subjective beliefs about the probability of

that event) of interest, and (2) explicitly inform subjects about the conditional likelihood of

observing different signals. The lack of ambiguity makes our test for asymmetry both uncon-

founded and relatively stringent, since it may be precisely in the interpretation of ambiguous

concepts that agents are most biased.

Overconfidence. Over time, asymmetric updating leads to overconfidence, in the sense

that individuals will over-estimate their probability of succeeding at a task compared to the

forecast of a unbiased Bayesian who began with the same prior and observed the same stream

of signals. We emphasize this definition to contrast it with others frequently used in the

literature. Findings that more than x% of a population believe that they are in the top x% in

terms of some desirable trait are commonly taken as evidence of irrational overconfidence, but

Zábojńık (2004), Van den Steen (2004), Santos-Pinto and Sobel (2005), and Benoit and Dubra

(2011) have all illustrated how such results can obtain under unbiased Bayesian information

processing.

Conservatism and Bayes’ rule. Psychologists have tested Bayes’ rule as a positive model

of human information-processing in ego-neutral settings. A prototypical experiment involves

showing subjects two urns containing 50% and 75% red balls, respectively, and then showing

them a sample of balls drawn from one of the two urns and asking them to predict which urn was

used. Unsurprisingly, these studies do not find asymmetry (indeed it is unclear how one would

define it when ego is not at stake). Studies during the 1960s did find conservatism, but this view

was upset by Kahneman and Tversky’s (1973) discovery of the “base rate fallacy,” seen as “the

antithesis of conservativism” (Fischhoff and Beyth-Marom 1983, 248–249). Recently Massey

and Wu (2005) have generated both conservative and anti-conservative updating within a single

experiment: their subjects underweight signals with high likelihood ratios, but overweight

signals with low likelihood ratios. In light of this literature it is important that we find

significantly more conservatism when subjects update about their own performance as opposed

to a robot’s performance, holding constant the data generating process. This suggests that

conservatism reflects motivations as well as cognitive limitations.

Confirmatory bias. Asymmetry is not obviously more pronounced among subjects with

a more optimistic prior (see Figure 3). Our data do imply a steady-state relationship similar

to confirmatory bias (Rabin and Schrag 1999), however, as more asymmetric individuals will

tend both to have higher beliefs and to respond more to positive information.

(p. 1387).
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Table 5: Implied Valuations for Information: Summary Statistics

N Mean Std. Dev. P (v < 0)

Estimation Sample
Learning top/bottom half 650 16.5 47.8 0.09
Learning percentile 650 40.0 78.3 0.09

Women
Learning top/bottom half 338 16.4 49.8 0.11
Learning percentile 338 38.7 82.0 0.11

Men
Learning top/bottom half 312 16.7 45.5 0.07
Learning percentile 312 41.5 74.1 0.06

Values for information are the differences between subjects bids for $2 and their bids for the bundle of $2 and

receiving an email containing that information. Values are in cents. The final column reports the fraction of

observations with strictly negative valuations. There are fewer than 656 observations because 6 subjects did

not provide valuations for information.

5 Demand for Information

Standard models of learning predict that agents place a weakly positive value on information,

since the best action to take after receiving information cannot do worse in expectation than

the action one would have taken without it. To test this prediction we calculate subjects’

implied value for the various information packages offered to them. For example, a subject’s

valuation for learning whether or not she was in the top half is defined as her bid for $2 and

learning this information minus her bid for $2, all in cents. We take this difference to remove

potential bias due to misunderstanding the dominant strategy in the “bid for $2” decision

problem.20 Subjects also bid on more precise information: learning their exact quantile. Table

5 summarizes the results. Subjects’ mean value for coarse information is 16.5 (s.d. 47.8), with

9% of subjects reporting a negative value. The mean valuation for precise information is higher

at 40.0 (s.d. 78.3), but again 9% of subjects report a negative value.21

Result 7 (Information Aversion) A substantial fraction of subjects are willing to pay to

avoid learning their type.

One caveat is that negative valuations could be an artefact of noise in subjects’ responses. The

strongest piece of evidence that this is not the case is our next result, which shows that confi-

dence has a causal effect on the propensity for aversion. Another clue is the high correlation

20Among our subjects, 89% bid less than $2, and 80% bid less than $1.99.
21Interestingly, Eliaz and Schotter (2010) find that subjects are willing to pay positive amounts for information

(unrelated to ego) even when it cannot improve their decision-making.
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(ρ = 0.77) between having a negative valuation for coarse information and a negative valuation

for precise information, which suggests that both measures contain meaningful information.

In Section A-1 of the supplementary appendix we develop this idea formally and show that

under the structural assumption of i.i.d. normal measurement error the bid data reject the

null hypothesis of no aversion.

Result 8 More confident subjects are causally less information-averse.

To examine whether information aversion is more pronounced among more or less confident

subjects we regress an indicator I(vi ≥ 0) on subjects’ logit posterior belief after all four rounds

of updating, which is when they bid for information. Columns I–III of Table 6 show that sub-

jects with higher posterior beliefs are indeed significantly more likely to have (weakly) positive

information values. The point estimate is slightly larger and remains strongly significant when

we control for ability (Column II) and gender and age (Column III). There could, however,

be some other unobserved factor orthogonal to these controls that explains the positive corre-

lation. To address this issue Columns IV and V report instrumental variables estimates. We

use two instruments. First, the average score of other subjects randomly assigned to the same

quiz type remains a valid instrument for beliefs, as in Section 4 above. In addition, once we

control for whether or not the subject scored in the top half the number of positive signals she

received during the updating stage is a valid instrument since signals were random conditional

on ability. Estimates using these instruments are similar to the OLS estimates, slightly larger,

and though less precise, still significant at the 10% level.

6 Optimally Biased Bayesian Updating

While belief dynamics in our experiment satisfy the core properties of Bayesian updating (in-

variance, sufficiency and stability), our subjects weigh new information conservatively and

asymmetrically, and a sizeable minority are averse to feedback. In this section we show that

these biases arise naturally in a model that posits only invariance, sufficiency and stability. The

model thus provides a potential explanation of the empirical results and more generally demon-

strates that invariance, sufficiency and stability provide enough structure to make theoretical

analysis tractable and to generate refutable predictions.

Consider an agent who is of high type H with probability µ0 and otherwise a low type L.

The binary types reflect our experimental design where a subject is either “scoring in the top

half” or not. There are T discrete time periods in each of which the agent receives a signal

st about her ability. The agent aggregates the stream of signals up to time t into a subjective

belief µ̂t. We allow the agent’s belief to differ from the objective probability µt derived using
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Table 6: Confidence and Positive Information Value

OLS IV
Regressor I II III IV V

logit(µ) 0.017 0.023 0.023 0.027 0.027
(0.007)∗∗ (0.009)∗∗∗ (0.009)∗∗ (0.016)∗ (0.017)∗

Top Half -0.033 -0.035 -0.038 -0.042
(0.028) (0.028) (0.034) (0.034)

Male 0.029 0.027
(0.023) (0.023)

YOG 0.018 0.018
(0.012) (0.012)

First-Stage F -Statistic - - - 118.48 113.19
N 609 609 609 609 609
R2 0.007 0.010 0.016 - -

Notes: Each column is a separate regression. Estimation is via OLS in Columns I–III and by IV in Columns

IV–V using the instruments described in the text. The outcome variable in all regressions is an indicator equal

to 1 if the subject’s valuation for information was positive; the mean of this variable is 0.91. “Top Half” is an

indicator equal to one if the subject scored above the median on his/her quiz type; “YOG” is the subject’s year

of graduation. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Bayes’ rule. The agent balances two objectives when forming biased subjective beliefs: she

wants to make good instrumental decisions, but also cares about her ego and wants to believe

that she is a high type.

We first define instrumental and belief utility formally and derive the agent’s optimal beliefs

if she could choose them freely. We then derive the updating behavior of optimally biased

Bayesians who manage their self-confidence. We find that agents apply a conservative and

asymmetric bias to signals. At the optimum high types learn their type quickly and with

probability approaching 1 as they receive more signals. Low types, on the other hand, exhibit a

“downward neutral bias”: their updating biases render their logit-belief a driftless random walk,

allowing them to maintain a moderate level of self-confidence even as they receive many signals.

We also show that the bias function is approximately optimal even if the agent’s instrumental

and belief utility changes, which lets us think of the optimal bias as an evolutionary adjustment.

Finally, we show that agents with low subjective beliefs have negative value for information.

6.1 Utility and Optimal Beliefs

We start with instrumental utility. With equal probability, nature selects one of the T time

periods as the “investment period”. In this period the agent must decide whether or not to
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take an action that yields a positive payoff if and only if her type is high. For example, the

agent might consider investing in the stock market and has to decide if she is a skilled investor,

or she might consider taking a challenging major in college and has to decide whether she is

smart enough. Formally, the agent can make an investment which pays 1 in the final period T

if she is of high type or 0 otherwise.22 The investment has a cost c ∈ [0, 1] which is drawn from

a well behaved continuous distribution G ∈ C2[0, 1] at the time of the decision. Not investing

gives a payoff of 0. The optimal decision of a Bayesian decision maker is thus to invest if and

only if c < µt. We assume that a biased agent behaves as if she were a Bayesian and invests

iff c < µ̂t. Hence, biasing updating is costly because it leads to worse decisions.

The agent also derives direct belief utility b(µ̂t) in period t from her subjective belief, where

b ∈ C2[0, 1] is a well-behaved, strictly increasing function normalized such that b(0) = 0 (or in

the benchmark case b(µ̂t) = 0 everywhere). The model is agnostic over the various kinds of

belief utility discussed in the literature; to capture them in a reduced-form way we make no

assumptions about the shape of b(·) other than monotonicity.23 24 The combined objective

function of the agent is the sum of her average belief utility and her expected instrumental

utility:

U(µ̂0, .., µ̂T ) =
1

T

T∑

t=1









b(µ̂t)
︸ ︷︷ ︸

belief utility

+

∫ µ̂t

0
(µt − c) dG(c)

︸ ︷︷ ︸

instrumental utility









(10)

When b(µ̂) = 0 the agent has no belief utility and behaves like a classical economic agent.

Note that because payoffs are time-averaged T serves as a measure of the information-richness

of the environment. In stating results we will make use of the notion of relative time τ ∈ [0, 1]

which we associate with absolute time ⌊τT ⌋.
To build intuition it will be useful to study the per-period expected utility of the low and

22The assumption that the instrumental value of investing is realized in the last period simplifies our calcula-
tion of belief utility because the agent only learns her type in the final period and therefore manages her belief
utility over all time periods 1 ≤ t ≤ T .

23Akerlof and Dickens (1982) and Koszegi (2006) assume direct “ego” utility, Caplin and Leahy (2001) and
Brunnermeier and Parker (2005) derive belief utility as anticipatory utility from future events, Carrillo and
Mariotti (2000) and Benabou and Tirole (2002) suggest that self-confidence compensates for a lack of self-
control, and Compte and Postlewaite (2004) propose a model where confidence enhances performance.

24In our model, subjective beliefs will converge for most time periods as T → ∞. Other models in the literature
analyze settings with few feedback periods where subjective beliefs remain noisy and hence the concavity or
convexity of the belief utility function matters (see for example Koszegi (2006)).
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Figure 4: Per-period utilities L(µ̂t) and H(µ̂t) of the low and high type agents
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high type agents, which we denote L(µ̂t) and H(µ̂t):

L(µ̂t) = b(µ̂t)−
∫ µ̂t

0
cdG(c) (11)

H(µ̂t) = b(µ̂t) +

∫ µ̂t

0
(1− c)dG(c)

Suppose for now that agents of low and high type could choose subjective beliefs µ∗
L and µ∗

H

to maximize these respective expressions. As Figure 4 illustrates, the high type agent would

always choose µ∗
H = 1 because both her belief and instrumental utility are increasing in her

subjective belief. The optimal (and possibly non-unique) µ∗
L for the low type agent depends on

b(·), however: an agent without belief utility chooses µ∗
L = 0 while an agent with ego concerns

may choose µ∗
L > 0. We focus on the interesting case µ∗

L > 0 in which the low-type agent

prefers on net to hold an inflated belief.25 We also restrict attention to decision problems with

L(1) < 0 which implies µ∗
L < 1, or in other words that the low-type agent would not want to

convince herself that she was the high type. While this extreme form of bias is conceivable in

situations where there are no real stakes (or belief utilities are large), it generates no interesting

predictions.

25It is not difficult to come up with conditions such that µ∗
L > 0. For example, any linear belief utility function

will suffice. We know that L(0) = 0 and L(1) < 0. Moreover, for small x we have L(x) > 0 because G′ is
continuous and hence bounded and therefore

∫ x

0
cdG(c) ≤

∫ x

0
cmaxc∈[0,1] (G

′(c)) dc = 1
2
(x)2 maxc∈[0,1] (G

′(c)).
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6.2 Optimal Biased Bayesian Updating

Agents receive a stream of i.i.d. signals in each period t. A signal can take finitely many values

which we index by k (1 ≤ k ≤ K) with distribution FH in the high state and FL in the low

state. Let λk = log(FH(k)/FL(k)) be the log-likelihood ratio for realization k. Every signal

realization is informative such that λk 6= 0. Motivated by our experimental results, we assume

that agents update their belief as biased Bayesians whose updating process satisfies invariance,

sufficiency and stability.

Definition 1 A biased Bayesian updating process consists of an initial subjective prior µ̂0 and

an updating rule

logit(µ̂t+1) = logit(µ̂t) + βkλk (12)

where βk ≥ 0.

We refer to the β-function as the responsiveness function and to β̃k = βk/maxk βk as the nor-

malized responsiveness.26 Biased Bayesian updating encompasses standard Bayesian updating

as a special case (µ̂0 = µ0 and βk = 1) while capturing the idea that the agent may choose

either to downplay or to overstate the informativeness of certain kinds of feedback. Following

Brunnermeier and Parker (2005), we say that a biased Bayesian updating process is optimal if

it maximizes expected total utility (10) among all biased Bayesian updating processes.27

We next characterize optimal biased Bayesian updating. We first confirm that when the

agent has no belief utility she chooses to be an unbiased Bayesian.

Proposition 1 Let T ≥ 2. The optimal biased Bayesian updating process for an agent without

belief utility (b(µ̂) = 0 for all µ̂) is Bayes’ rule: µ̂0 = µ0 and βk = 1 for all realizations k.

To characterize optimal updating process for agents with belief utility we introduce the notions

of conservatism and downward neutral bias, which is a strong form of asymmetry.

Definition 2 A biased Bayesian updating process is conservative if the agent always responds

less to new information than an unbiased Bayesian (maxk βk < 1). It exhibits a downward

neutral bias (DNB) if
∑

k FL(k)β̃kλk = 0.

Intuitively, DNB implies that the agent’s mean logit-belief remains unchanged if the state

is low; the agent essentially interprets the stream of information as white noise. DNB is a

26The normalized responsiveness is only defined for responsiveness functions which are not zero everywhere.
27An optimal biased Bayesian updating process always exists because (a) the expected utility is continuous

in µ̂0 ∈ (0, 1) and βk; (b) using the logic of proposition 2, one can show that there are ǫ > 0 and M > 0 such
it is never optimal to choose µ̂0 < ǫ, µ̂0 > 1− ǫ or βk > M . Hence, the optimal parameters live in a compact
Euclidean metric space.

29



Figure 5: Evolution of logit-beliefs of an unbiased Bayesian (left panel) and an optimally biased
Bayesian (right panel)
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generalized notion of asymmetry : for example, in the binary signals case where we can denote

the realization with the higher log-likelihood ratio as the “high” signal H and the realization

with the lower log-likelihood ratio as the “low” signal L, DNB implies that βH > βL.

Proposition 2 The optimal updating process has the following features: (1) βT
k → 0 as T →

∞ for all k so that the agent updates conservatively for large T ; (2)
∑

k FL(k)β̃
T
k λk → 0 as

T → ∞ so that the agent exhibits DNB for large T ; (3) if moreover the low type’s optimal

belief µ∗
L is unique and L′′(µ∗

L) < 0 then µ̂T
0 → µ∗

L; (4) for any relative time τ > 0 the agent’s

belief converges in probability to µ∗
L in the low state and to µ∗

H = 1 in the high state.

The intuition for this result can be illustrated graphically for the binary signals case. The

evolution of logit-beliefs described in Equation 12 follows a random walk: in each period, the

logit-belief increases by βHλH with probability FH(H) for the high type (FL(H) for the low

type) and otherwise decreases by βLλL. The mean logit-belief of the high type, γ̂Ht , and the

variance in logit-beliefs,
(
σ̂H
t

)2
, can hence be expressed as:

γ̂Ht = logit(µ̂0) + t [FH(H)βHλH + (1− FH(H))βLλL] (13)
(
σ̂H
t

)2
= tFH(H)(1− FH(H)) (βHλH − βLλL)

2

We can derive analogous expressions γ̂Lt and
(
σ̂L
t

)2
for the mean and variance of the low type’s

logit-belief by replacing the probability FH(H) with FL(H). The left panel of Figure 5 shows

the mean logit belief of the high type (increasing solid line) and low type (decreasing solid

line) when the agent is an unbiased Bayesian. Note that the mean logit beliefs of both types

converge to +∞ and −∞ at rate t while the standard deviation increases only at rate
√
t.

Therefore, beliefs converge to either 1 or 0 in probability.
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The biased Bayesian would prefer keep her beliefs close to either 1 (in the high state) and

µ∗
L > 0 (in the low state). By choosing an initial belief close to her optimal low-type’s belief

µ∗
L and by becoming asymmetric (βH/βL ↑) she can slow the rate at which the low type’s

logit-belief drifts to −∞, or even eliminate this drift alltogether by choosing a DNB. The

right panel of Figure 5 illustrates this idea. Asymmetry alone is insufficient, however, without

conservatism: unless the agent also reduces her responsiveness to information the variance of

the low type’s logit-beliefs will make it impossible to keep logit-beliefs close to µ∗
L. Although

the agent’s mean logit-belief in the low state stays close to µ∗
L, her realized logit-belief will

typically be either very small or very large. Since L(0) = 0 and L(1) < 0 this is costly; the low-

type agent would in fact be worse off than under unbiased Bayesian updating. Conservatism

addresses this problem by keeping the low-type agent’s beliefs close to µ∗
L in probability. The

proof of Proposition 2 formalizes this intuition: it shows that any updating process that is not

both conservative and downward-neutral biased must do strictly worse than a process that is,

and that an optimal updating process allows the agent to closely approximate her “first best”

payoffs by keeping her belief bounded away from zero at µ∗
L in the low state while still learning

her type rapidly in the high state.

Figure 6: Unbiased bayesian versus optimal simple updating process: numerical optima for
finite T and binary signals
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Plots of optimal strategies for the unbiased Bayesian (solid lines) and agent with optimal simple updating bias

(dotted lines) cases. (6a) plots responsiveness to positive and negative signals (βH and −βL) for 1 ≤ T ≤ 80.

(6b) plots information values for realizable values of µ̂[τT ] for T = 31, and [τT ] = 10. The remaining parameters

are fixed in both cases at µ0 = 0.5, c ∼ U [0, 1], b(µ̂) = 1
4
µ̂, p = 0.75, q = 0.25
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Proposition 2 characterizes optimal behavior for large T , which describes information-rich

environments. We can also calculate the optimal bias numerically for finite T . Figure 6a

shows the optimal updating policy over the range 1 ≤ T ≤ 80 for a binary signals example

with a uniform cost distribution, an objective prior of µ0 = 1
2 and belief utility b(µ̂) = 1

4 µ̂.
28

These parameters satisfy the long-term learning condition L(1) < 0 and imply µ∗
L = 1

4 : our

biased agent would like to either learn for sure that she is good (in the high state) or maintain

a confidence level of 25% (in the low state). As in our experiment signals are high in the

high state with probability 0.75 and in the low state with probability 0.25. The numerical

results confirm that the agent is asymmetric over the entire range and conservative for T > 8.

Moreover, the agent becomes progressively more conservative as T increases.

6.3 Robustness of Biased Bayesian Updating

Proposition 2 characterizes the optimal biased Bayesian updating process for a specific decision

problem summarized by per-period utilities L(µ̂) and H(µ̂). In reality, of course, the agent

will encounter many different decision problems where her ego is at stake. Yet one can show

that biases which are optimal for one decision problem are also asymptotically optimal for any

other decision problem where ego utility is at stake.

Proposition 3 Fix a signal distribution (FH , FL). Consider a decision problem (L(µ̂),H(µ̂));

let µ∗
L > 0 be the low type’s optimal belief for this problem, and let β̃T

k be the optimal respon-

siveness function for some other decision problem (L̃(µ̂), H̃(µ̂)). Now consider a sequence of

biased Bayesian updating processes such that (a) the responsiveness function is given by β̃T
k ,

and (b) µ̂T
0 → µ∗

L. Then the biased agent’s utility and subjective beliefs at time τ when applying

this updating process to the original decision problem (L(µ̂),H(µ̂)) converge in probability to

their first-best values as T → ∞.

The result implies that the agent can do no better in the limit than by simply “recycling”

the updating rule from a different decision problem: she applies a uniform bias to any signal

distribution (independent of the decision problem) and chooses an initial subjective prior close

to the low-type’s optimal belief. The fact that the responsiveness function is not sensitive to

the decision problem allows us to interpret optimal biases as potentially arising through an

evolutionary process in which nature selects an updating rule for a generic decision problem

which the agent then applies to different specific problems throughout the course of her life.

28This is the expected utility of the agent with prior µ̂ who expects to learn her type before making a decision,
which allows us to interpret belief utility in this example as a proxy for anticipatory utility.
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6.4 Value of Information

We now analyze how biased agents value information. First suppose that with probability

ǫ > 0 the agent is presented with the opportunity to purchase a perfectly informative signal

at time T̃ just before learning the cost c for making costly investment. It is easy to calculate

the unbiased Bayesian’s willingness to pay for information, WTPPB(µT̃ ):

WTPPB(µT̃ ) = µT̃

(

1−
∫ 1

0
cdG(c)

)

−
∫ µ

T̃

0
(µT̃ − c)dG(c) (14)

Importantly, an unbiased Bayesian’s value of information is always positive and single-peaked:

the value of information is zero when the agent is very sure about her type and largest when

she is the least sure. This valuation is generally sub-optimal for an agent with belief utility,

however, who wishes to balance this motive against the needs of decision-making. If a low type

were to learn the truth at time T̃ her carefully calibrated self-belief management would break

down and she would enjoy no belief utility between periods T̃ and T .

We therefore calculate the optimal willingness to pay WTPOB(µ̂τ , τ) at relative time τ

which the agent would commit to at time t = 0. To simplify our analysis and build on

the results from the previous section, we assume that the decision-maker does not take the

possibility of buying information into account when choosing her bias. This assumption seems

appropriate when the probability of purchasing information, ǫ, is small.

Proposition 4 Assume that an agent with positive belief utility chooses an optimal biased

Bayesian updating process. Let the subjective belief at relative time τ be 0 < µ̂τ < 1. The

agent’s willingness to pay evaluated at period 0, WTPOB(µ̂τ , τ), satisfies

lim
T→∞

WTPOB(µ̂τ , τ) = −L̃(µ̂τ ) (15)

where L̃(µ̂) = (1 − τ)b(µ̂) −
∫ µ̂

0 cdG(c) is the per-period utility of a low type with belief utility

(1− τ)b(µ̂).

Intuitively, any agent with subjective belief below 1 is asymptotically likely to be a low type, as

otherwise her beliefs would have converged rapidly to 1. Proposition 2 implies that her beliefs

in the low state follow a driftless random walk with vanishing variance and hence stay around

µ̂τ . This implies that her belief utility over the remaining relative time 1− τ is approximately

(1 − τ)b(µ̂τ ). Buying information, on the other hand, would reveal her to be a low type

immediately and yield a payoff of 0.

The economic significance of this result is that for low subjective beliefs µ̂ (and τ not too

large) the optimal willingness to pay is negative, since the benefits of sustaining belief utility
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exceed the costs of mistaken choices, while for high subjective beliefs the optimal WTP is

positive, since this relationship is reversed.29 Thus Proposition 4 implies that the optimally

biased agent will have a negative value of information when her belief is low and a positive

value of information when her belief is high. This effect is mitigated for larger τ when belief

utility is aggregated over fewer periods and hence becomes relatively less important; in this

case information demands begin to resemble traditional, unbiased demands.

Figure 6b plots an example of the finite-T numerical demands generated by our model for

both an unbiased and an optimally biased Bayesian. The unbiased Bayesian always values

information positively, and values it most at intermediate beliefs where uncertainty is highest.

The optimally biased agent, on the other hand, places a negative value on information for low

levels of confidence and only assigns a positive value above a threshold level of confidence.

7 Gender Differences

By connecting different information-processing biases, our model provides one candidate frame-

work for analysing heterogeneity in information-processing across individuals. Gender is a par-

ticularly relevant dimension. Gender differences related to self-confidence have been demon-

strated in numerous studies in psychology, and economists have recently begun to investigate

gender differences in beliefs about relative ability.30 Consistent with prior work, men in our

sample are significantly more confident than women: the mean difference in confidence prior

to taking the quiz was 6.7 percentage points (p < 0.001). Some of this may reflect differences

in actual ability, as men scored 7.9 on average while women scored 6.9 (p < 0.001). Even when

we look within groups of subjects who took the same version of the quiz and received the same

score, we find that men are 5.0 percentage points more confident on average (p < 0.001).

Of course, the point of our design is not to generate additional (albeit clean) evidence of

gender differences in confidence, but rather to examine what is at the root of this finding. Do

women and men simply differ in their prior, or do they process information differently, or have

different demands for information? To quantify gender differences in information processing,

Table 3b reports estimates of Equation 7 differentiated by gender and estimated using both

OLS and instrumental variables. Men are substantially less conservative than women, reacting

significantly more to both positive and negative feedback and 21% more to feedback on average

29Note, that WTPOB(µ̂τ , τ ) equals −L(µ̂τ ) for τ = 0. Therefore, the biased Bayesian’s willingness to pay for
information is negative for low beliefs because L(µ∗

L) > 0.
30Numerous psychology studies purport to show that men are more (over-)confident than women; see the

references in Barber and Odean (2001), who use gender as a proxy measure of overconfidence in studying
investment behavior. Niederle and Vesterlund (2007) show that men are much more competitive than women
and that part of this difference is attributable to differences in self-confidence. They also speculate that gender
differences in feedback aversion may have further explanatory power.
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(23% when estimated by IV). Estimated changes in relative asymmetry are less stable; OLS and

IV point estimates of
βH+βMale

H

βL+βMale
L

− βH

βL
are 0.05 and−0.10, respectively, and neither is significantly

different from zero (p = 0.64, 0.74). The evidence thus suggests that women are the more ego-

defensive gender; they do not merely have different priors, but seem to process information

differently. Moreover since ability is uncorrelated with asymmetry and conservatism (Table

3a) these gender differences cannot simply capture differences in ability.

Turning to demand for feedback, men and women place similar average valuations on

information; the means reported in Table 5 are not statistically different from each other.

Men, however, are significantly less averse to feedback. They are 3.6 percentage points less

likely to place negative bids for coarse information, relative to a baseline of 11% for women

(p = 0.09). They are also 4.6 percentage points less likely to place negative bids for precise

information, relative to a baseline of 11% for women (p = 0.03). Figure 7 provides a less

parametric view, plotting mean information values by gender and by quartile of the posterior

belief distribution. The relationship between beliefs and valuations is inverse-U shaped for men,

as a standard model of information demand would predict. For women, however, valuations

decline somewhat from the first to second quartile and then increase dramatically from there

to the fourth quartile. Confident women express significantly stronger demand for information

than confident men. Interestingly, valuations are particularly low for women with beliefs

between 26% and 50% (though not between 0% and 25%), similar to the pattern in Figure

6b. Overall the information demand data, like the updating data, are consistent with our

theoretical framework if women are more likely than men to value belief utility.

8 Conclusion

We use a large-scale experiment to open the black box of belief updating in a setting where

ego is at stake. While we can soundly reject the hypothesis that agents use Bayesian updating,

we do find empirical support for three core structural properties – invariance, sufficiency and

stability – of Bayes’ rule. Subjects’ differ from Bayes’ rule in the way they interpret signals;

they do so with pronounced conservative and asymmetric biases. The facts that these biases are

equally prevalent among more and less able subjects and are mitigated in a placebo treatment

both suggest that they arise from subjects’ desire to protect their ego, rather than cognitive

errors. Subjects’ valuations for information are also biased, as a substantial minority – and

low-confidence subjects in particular – are averse to obtaining informative feedback.

Taken together, the experimental data suggest a disciplined way for theorists to relax Bayes’

rule, preserving the core properties of invariance, sufficiency and stability while allowing for

biased interpretations. We pursue this approach in the second half of the paper. We find
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Figure 7: Information Values by Beliefs and by Gender
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Plots, for male and female subjects separately and for quartiles of the posterior belief distribution, the mean

valuations for learning whether or not the subject scored in the top half of performers.

that conservatism, asymmetry, and an aversion to information all emerge naturally as optimal

biases. These findings provide a potential explanation for our empirical results and, perhaps

more importantly, illustrate how they can be incorporated into tractable, refutable theories.
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A Proofs

A.1 Proof of Proposition 1

When b(µ̂) = 0 for all µ̂, the objective function in (10) is maximized if and only if for any
possible history of signals at any time t ≤ T and associated Bayesian belief µt the following
holds: µ̂t > c iff µt > c. Since the cost distribution is continuous and positive, this implies
µ̂t = µt for any signal history that generates the objective Bayesian posterior µt. Because all
signal realizations are informative (and hence occur with positive probability) we obtain for
t = 1 already K linear equations of the form logit(µ̂0) + βkλk = logit(µ0) + λk, one for each
signal realization. As we have K+1 unknowns we can use any of the signal realizations at time
t = 2 – e.g. two consecutive k = 1 realizations – to uniquely pin down βk = 1 and µ̂0 = µ0.

A.2 Auxiliary Approximation Lemma

For our proofs, we will frequently exploit that logit beliefs in our model are sums of independent
random variables. While these variables are i.i.d. their distribution generally depends on T
(because the responsiveness function changes with T ), so we cannot use the standard central
limit theorem. Instead we use Stein’s (1972) method to bound the approximation error of the
central limit theorem in our framework.

Consider the random variable Y defined over the realizations k of a single signal:

Y (k) = β̂kλk with probability FL(k) (16)

where β̂k ≤ 1 is the normalized responsiveness (which implies that for at least one realization
we have β̂k = 1). The following lemma will be useful:

Lemma 1 Consider any normalized responsiveness function. Let k∗ = argmink |λk|. We then
have V ar(Y ) ≥ FL(k

∗) (1− FL(k
∗))λk∗.

Proof: The variance of Y is minimized over all normalized responsiveness functions if βk∗ = 1
and βk = 0 for all k 6= k∗. This reduces Y to a simple Bernoulli random variable and the
result follows.

We define two new constants:

ML = 5

(

maxk λk
√

FL(k∗) (1− FL(k∗))λk∗

)3

MH = 5

(

maxk λk
√

FH(k∗) (1− FH(k∗))λk∗

)3

We can now prove the following approximation for subjectve beliefs:
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Lemma 2 Let ǫ > 0 and −∞ ≤ a < b ≤ ∞. The random variable W =
logit(µ̂⌊τT⌋)−γ̂L

⌊τT⌋

σ̂L
⌊τT⌋

satisfies:

Prob(a ≤ W ≤ b|L) ≤ Φ(b+ 2ǫ)− Φ(a− 2ǫ) +
ML

ǫ
√
τT

where Φ is the cdf of the normal distribution N(0, 1). An analogous result holds for beliefs in
the high state where ML is replaced by MH .

Note, that the upper bound depends only on ǫ, τT and the distribution of the signal distribution
but (importantly) not on the particular responsiveness function.

Proof: WLOG we focus on low-state beliefs only. We define the function h:31

h(x) =







0 if x < a− 2ǫ
1
2ǫ2 (x− a+ 2ǫ)2 if a− 2ǫ ≤ x < a− ǫ
1− 1

2ǫ2 (x− a)2 if a− ǫ ≤ x < b
1 if a ≤ x < b
1− 1

2ǫ2
(x− b)2 if b ≤ x < b+ ǫ

1
2ǫ2

(x− b− 2ǫ)2 if b+ ǫ ≤ x < b+ 2ǫ
0 if b+ 2ǫ ≤ x

This function approximates the indicator function that takes value 1 on the interval [a, b]
such that h is bounded above by the indicator function on the interval [a − 2ǫ, b + 2ǫ],
bounded below by the indicator function on [a, b] and bounded derivative |h′(x)| ≤ 1

ǫ
.

Now we use Stein’s inequality to establish

|E[h(W )]− E[h(Z)]| ≤ maxx h
′(x)5E|Xi|3√
τT

where Z ∼ N(0, 1) and Xi are i.i.d. random variables of the form X = Y−E(Y )√
V ar(Y )

. Thus

Prob(a ≤ W ≤ b) ≤ E[h(W )] ≤ E[h(Z)] +
(maxx h

′(x)) 5E|Xi|3√
τT

and the result of the lemma then follows.

A.3 Uniform Downward-Neutral Bias

We define a particular responsiveness function which we call the uniform downward neutral
bias that approximates the utility of the unrestricted agent who can freely choose her beliefs
in both states of the world. This will be useful to prove proposition 2 where we show that non-
conservative responsiveness functions or those which do not satisfy the DNB property cannot
be optimal because they cannot approximate the utility of the unrestricted agent.

For a given signal distribution, we partition the set of possible realizations into an “Up-set”
U = {k|λk > 0} and a “Down-set” D = {k|λk < 0}. We fix a constant 1

2 < θ < 1. For each T

31For a = −∞ (b = ∞) we adapt the definition naturally and let h(x) = 1 for x < b (x > a).

41



we define the following biased Bayesian updating process:

µ̂T
0 = µ∗

L

βk =







T−θ for k ∈ U

T−θ

∑

k∈U FL(k)λk

−∑k∈D FL(k)λk
︸ ︷︷ ︸

κ

for k ∈ D (17)

Note, that 0 < κ < 1 because the unbiased agent’s expected change in logit-beliefs in the low
state has to be negative (hence,

∑

k∈U FL(k)λk+
∑

k∈D FL(k)λk < 0). We can derive the mean
and variance of logit-beliefs at relative time τ in both states:

γ̂HτT = logit(µ∗
L) + τT 1−θ

(
∑

k∈U
FH(k)λk + κ

∑

k∈D
FH(k)λk

)

︸ ︷︷ ︸

ΓH

γ̂LτT = logit(µ∗
L)

(
σ̂H
τT

)2
= τT 1−2θ

(
∑

k∈U
FH(k)λ2

k + κ2
∑

k∈D
FH(k)λ2

k − Γ2
H

)

︸ ︷︷ ︸

ΣH>0

(
σ̂L
τT

)2
= τT 1−2θ

(
∑

k∈U
FL(k)λ

2
k + κ2

∑

k∈D
FL(k)λ

2
k

)

︸ ︷︷ ︸

ΣL>0

(18)

Note, that ΓH > 0 because the unbiased agent’s expected change in logit-beliefs in the high
state is strictly positive (hence,

∑

k∈U FH(k)λk +
∑

k∈D FH(k)λk > 0) and κ < 1. We call
this particular updating process the uniform downward-neutral bias (uniform DNB) because a
uniform bias factor is applied to up and down signal realizations, respectively, and logit-beliefs
for the low type follow a random walk without drift.

Lemma 3 Assume a biased Bayesian with uniform DNB. At any relative time τ > 0, the
agent’s high state belief converges in probability to 1 while the agent’s low state belief converges
in probability to µ∗

L. The total utility (10) of the agent converges to the total utility of an
unrestricted agent with belief µ∗

L in the low state and belief 1 in the high state.

Figure 5 illustrates the intuition for the lemma. In the high state, the agent’s logit-belief
at relative time τ is of order τT 1−θ according to (18). This expression converges to infinity.
In the low state, the agent’s logit-belief behaves like a driftless random walk whose standard
deviation is of order

√
τT

1
2
−θ, which converges to 0.

To formalize this argument, we first show that for any lower bound m the probability that
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the high type’s logit-belief lies above m at relative time τ converges to 1 as T → ∞:

P (logit(µ̂⌊τT ⌋) < m|H) = P

(
logit(µ⌊τT ⌋)− γ̂H⌊τT ⌋

σ̂H
τT

<
m− γ̂H⌊τT ⌋

√
τT

1
2
−θ

√
ΣH

|H
)

≤ Φ

(
m− γ̂H⌊τT ⌋

√
τT

1
2
−θ

√
ΣH

+ 2ǫ

)

+
MH

ǫ
√
τT

For the last inequality we use our approximation lemma 2 with a = −∞ and any ǫ > 0. We

now exploit the fact that
m−γ̂H

⌊τT⌋
√
τT

1
2−θ√ΣH

→ −∞, which holds since γ̂H⌊τT ⌋ → ∞ and the numerator

is of order O(τT 1−θ) while the denominator is only of order O(
√
τT

1
2
−θ).

We next show that for any ǫ′ > 0 the probability that the low type’s belief stays within
an ǫ′-neighborhood around logit(µ∗

L) converges to 1 in probability as T → ∞. Note, that the
expected logit-belief at any relative time τ is logit(µ∗

L) under the uniform DNB:

P (|logit(µ̂⌊τT ⌋)− logit(µ∗
L)| > ǫ′|L) =

= P

(

logit(µ̂⌊τT ⌋)− logit(µ∗
L)

σ̂L
τT

< − ǫ′

σ̂L
τT

|L
)

+ P

(

logit(µ̂⌊τT ⌋)− logit(µ∗
L)

σ̂L
τT

>
ǫ′

σ̂L
τT

|L
)

≤ Φ

(

−ǫ′
√
τT

1
2
−θ

√
ΣL

+ 2ǫ

)

+ 1− Φ

(

ǫ′
√
τT

1
2
−θ

√
ΣL

− 2ǫ

)

+
2ML

ǫ
√
τT

For the last inequality we fix any ǫ > 0 and use our approximation lemma 2 twice. We can
make this upper bound as small as we want for sufficiently high T since θ > 1

2 .
Also note that we can obtain a uniform upper bound for all relative time by setting τ = 1

on the RHS. Since the cost distribution is atomless, it follows that the expected utility of the
low type agent converges to the utility of the unconstrained low type with constant belief µ∗

L.

A.4 Proof of Proposition 2

Step 1: Conservatism We first show conservatism (claim 1 of the proposition) through proof
by contradiction. The intuition for conservatism is as follows: assume the agent’s responsive-
ness does not converge to 0. There will be some realization k and a sequence (T j), such that
|βT j

k | > δ > 0 for some δ > 0. We will show that the agent’s total utility in the low state
converges to at most 0 as T j → ∞. According to lemma 3 an agent with uniform DNB would
do strictly better: hence the agent cannot be optimally biased.

We start by bounding the probability that subjective beliefs fall within the interval [ǫ′, 1−ǫ′]
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in the low state:

P (ǫ′ < µ̂⌊τT j⌋ < 1− ǫ′|L)

= P

(

logit(ǫ′)− logit(µ∗
L)

σ̂L
τT

<
logit(µ̂⌊τT ⌋)− logit(µ∗

L)

σ̂L
τT

<
logit(1− ǫ′)− logit(µ∗

L)

σ̂L
τT

|L
)

≤ Φ

(
logit(1− ǫ′)− logit(µ∗

L)

σ̂L
τT

+ 2ǫ

)

− Φ

(
logit(ǫ′)− logit(µ∗

L)

σ̂L
τT

− 2ǫ

)

+
ML

ǫ
√
τT

For the last inequality we fix any ǫ > 0 and use our approximation lemma 2. We next replicate
the proof of lemma 1 to show:

σ̂L
τT j ≥

√
τT j

√

FL(k∗) (1− FL(k∗))λk∗δ
︸ ︷︷ ︸

M ′>0

We can therefore simplify the upper bound:

P (ǫ′ < µ̂⌊τT j⌋ < 1− ǫ′|L) ≤ 1√
2π

(
logit(1− ǫ′)− logit(ǫ′)√

τT jM ′
+ 4ǫ

)

+
ML

ǫ
√
τT j

= M ′′ǫ+
M ′′′(ǫ, ǫ′)√

τT j

Now fix a relative time τ∗. We can bound the total utility of the low type above by τ∗b(1) +
(1− τ∗)K where

K =

(

M ′′ǫ+
M ′′′(ǫ, ǫ′)√

τT j

)

b(1)

︸ ︷︷ ︸

Bound on expected
utility from posterior
falling within [ǫ′, 1 − ǫ′]
after relative time τ∗

+ b(ǫ′)
︸︷︷︸

Bound on expected util-
ity from posteriors be-
low ǫ′ after relative time
τ∗

+ A

[

b(1) −
∫ 1−ǫ′

0
cdG(c)

]

︸ ︷︷ ︸

Bound on expected utility
from posteriors above 1−ǫ′ af-
ter relative time τ∗ (probabil-
ity A)

Due to the fact that the cost distribution is non-atomic, the last term is negative for sufficiently
small ǫ′ as L(1) < 0. Next, choose first τ∗ and ǫ′ and then T ∗ to make τ∗b(1) and the first
two terms of K as small as desired for all T j > T ∗. Therefore, the low type’s utility cannot
be bounded away from 0 and the biased Bayesian does not do strictly better than an unbiased
Bayesian for large T j.

Step 2: DNB The proof of claim 2 of the proposition proceeds in 2 sub-steps. (A) We
first show that for any constant M > 0 we have maxk β

T
k > M

T
for any sufficiently large T .

(B) Next, if optimal updating does not exhibit DNB for large T then the mean logit low-type
belief converges either to plus or minus infinity. In both cases, the biased agent’s utility will
be strictly lower than under the uniform DNB.

We start with part A. Assume this claim is wrong. Then, we can find some M and a
sub-sequence T j such that maxk β

T j

k < M
T j . This implies that mean logit-belief in the high

state at any relative time τ is bounded above by M∗ = M maxk λk. But since belief utility is
strictly increasing, her utility will be strictly lower than the utility of the unrestricted agent,
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and therefore also strictly lower than for the agent with uniform DNB for any large enough T .
This is a contradiction since we assumed that the responsiveness function is optimal.

Next consider claim B. Assume that
∑

k FL(k)β̂
T
k λk does not converge to 0. Then there is

some ǫ > 0 and a sub-sequence T j such that |
∑

k FL(k)β̂
T j

k λk| > ǫ. For any constant M , this

implies |∑k FL(k)β
T j

k λk| > Mǫ
T j as long as T j is sufficiently big. Hence, the mean logit-belief

of the low type converges either to −∞ or +∞.
We fix τ∗ < 1 and look at the case γ̂L⌊τ∗T j⌋ → −∞ first. Take a constant B < logit(µ∗

L).

We use our approximation lemma 2 (for some ǫ > 0):

P (logit(µ̂⌊τ∗T j⌋) > B|L) = P

(
logit(µ̂⌊τ∗T j⌋)− γ̂L⌊τ∗T j⌋

σ̂L
τ∗T j

>
B − γ̂L⌊τ∗T j⌋

σ̂L
τ∗T j

|L
)

≤ 1− Φ

(
B − γ̂L⌊τT j⌋

σ̂L
τ∗T j

− 2ǫ

)

+
ML

ǫ
√
τ∗T j

≤ 1− Φ (−2ǫ) +
ML

ǫ
√
τ∗T j

≤ 2

3
for ǫ small enough and large enough T j

Hence, the probability of the low-type’s logit-belief being below B for relative times τ > τ∗ is
at least 1

3 . Hence, the low-type’s utility is strictly lower than for an agent with unrestricted
beliefs. This is a contradiction since we assumed that the responsiveness function is optimal.
We can arrive at a similar contradiction for the case γ̂L⌊τ∗T j⌋ → ∞.

Step 3: Initial Beliefs
We prove claims 3 and 4 of proposition 2 in 3 sub-steps. (A) We define an upper envelope

function U(x) for L(x). (B) We show that σ̂L
τT → 0 as T → ∞, which is a strong form of

conservatism. (C) We show that this implies claims (3) and (4) of proposition 2.
We start with part A. Using Taylor’s theorem we can write

L(x) = L(µ∗
L) +

1

2
L′′(y)(x− µ∗

L)
2 (19)

for some y ∈ [x, µ∗
L]. Note that L

′′ is continuous and hence strictly negative in an ǫ-neighborhood
of µ∗

L, since L′′(µ∗
L) < 0. We can assume that L′′(y) ≤ −A for some A > 0 in that neighbor-

hood. We can now define the upper envelope function U(x) for L(x) as follows:

U(x) =







L(µ∗
L)− A

2 (µ
∗
L − ǫ)2 for x ≤ µ∗

L − ǫ

L(µ∗
L)− A

2 (x− µ∗
L)

2 for µ∗
L − ǫ ≤ x ≤ µ∗

L + ǫ

L(µ∗
L)− A

2 (µ
∗
L + ǫ)2 for x ≥ µ∗

L + ǫ

(20)

This upper envelope will lie above L(x) in the ǫ-neighborhood. We can refine the upper
envelope function such that the upper envelope function dominates L(x) on the interval [0, 1]
by considering the following set M that includes all local maxima outside the ǫ-neighborhood:

M =
{
x|L′(x) = 0

}
\ [µ∗

L − ǫ, µ∗
L + ǫ]

45



Denote the supremum of the L(M) with m∗. Due to the Bolzano-Weierstrass theorem, there
is a sequence (xj) ⊂ M such that L(xj) converges to m∗. Due to continuity, there is a
subsequence (xj

′
) of (xj) and a x̃ such that xj

′ → x̃ and L(xj
′
) → m∗ and L(x̃) = m∗. If

m∗ ≥ L(µ∗
L) then we get a contradiction because we assumed that the maximum at µ∗

L is
unique. Hence, m∗ < L(µ∗

L). Therefore, we can simply make the ǫ-neighborhood of the upper-
envelope function small enough such that it always lies above m∗. This will ensure that the
upper envelope function dominates L on the interval [0, 1].32

For part B, assume that σ̂L
T does not converge to 0 as T → ∞. Then there is a subsequence

(T j) and some δ > 0 such that σ̂L
T j > δ. Let δ′ < δ

√
2π
4 and τ∗ < 1. We use our approximation

lemma 2 (for some ǫ > 0 and any τ > τ∗):

P (|logit(µ̂⌊τT j⌋)− logit(µ∗
L)| < δ′|L)

= P

(
logit(µ∗

L)− δ′ − γ̂L⌊τT j⌋
σ̂L
⌊τT j⌋

<
logit(γ̂L⌊τT j⌋)− γ̂L⌊τT j⌋

σ̂L
⌊τT j⌋

<
logit(µ∗

L) + δ′ − γ̂L⌊τT j⌋
σ̂L
⌊τT j⌋

|L
)

≤ Φ

(
logit(µ∗

L) + δ′ − γ̂L⌊τT j⌋
σ̂L
⌊τT j⌋

+ 2ǫ

)

− Φ

(
logit(µ∗

L)− δ′ − γ̂L⌊τT j⌋
σ̂L
⌊τT j⌋

− 2ǫ

)

+
ML

ǫ
√
τT j

≤ 1√
2π

(

2δ′

σ̂L
T j

+ 4ǫ

)

+
ML

ǫ
√
τT j

≤ 1

2
+

4ǫ√
2π

+
ML

ǫ
√
τ∗T j

≤ 2

3
for ǫ small enough and large enough T j

Hence, the probability that subjective beliefs fall outside the interval [logit−1(logit(µ∗
L −

δ′)), logit−1(logit(µ∗
L + δ′))] for τ > τ∗ is at least 1/3. The utility of the low-type agent using

the upper-envelope function U(x) accumulated over time τ > τ∗ is always strictly worse than
the utility of the agent with a uniform DNB who can maintain beliefs arbitrarily closely to the
optimal µ∗

L. Since her actual utility is even lower, we can strictly improve the agent’s utility
by using a uniform DNB. This is a contradiction since we assumed that the responsiveness
function is optimal. Hence we proved σ̂L

T → 0.
It follows that µ̂T

0 → µ∗
L. Otherwise, there would be a δ-neighborhood of µ∗

L and a subse-

quence (T j) such that the initial prior µ̂T j

0 falls outside that interval. Combined with part A,
this would imply that the agent’s utility is strictly lower than under the uniform DNB along
this sequence for large T j which is a contradiction.

Combining part A with claim (3) of the proposition we immediately get convergence of
low-type beliefs at any relative time τ to µ∗

L. Part A of step 2 also establishes that high-type
mean-logit beliefs converge to +∞. It is easy to see that σ̂L

T → 0 implies σ̂H
T → 0. Using

lemma 2 then establishes that high-type beliefs converge to 1 in probability at any relative
time τ > 0.

32If there are finitely many local maxima, then the argument simplifies to m∗ being the second-highest
maximum.
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A.5 Proof of Proposition 3

We have established in step 3 of the proof of proposition 2 that σ̂L
T → 0. Using lemma 2 we

can show that the probability that the low-type’s beliefs remain in an interval around the new
optimal low-type beliefs converges to 1 for any relative time τ . High-type belief convergence
to 1 at all relative times is not affected by choosing a different prior.

A.6 Proof of Proposition 4

We know that high-type beliefs converge to 1 while low type beliefs stay close to µ∗
L. We also

know that σ̂L
T → 0 and σ̂H

T → 0 and that there are constants m1,m2 > 0 such that m1 <
σ̂L
T /σ̂

H
T < m2. Hence, the probability at relative time τ that the agent is a low type provided

that µ̂⌊τT j⌋ < 1 converges to 1. Therefore, learning one’s type decreases the agent’s total utility
to 0 with probability approaching 1 as T → ∞ and destroys belief utility (1 − τ)b(µ̂τ ) (since
low type logit-beliefs follow a driftless random walk with vanishing variance).
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A-1 A Test for Non-negative Information Valuations

If subjects are not careful recording their answers, there may be cases where they record a lower
value for $2 and information than for $2 alone, simply by chance. This section constructs a
formal test of this hypothesis under weak assumptions about the structure of reporting errors.
Let Si, Si + Ci, and Si + Pi be agent i’s true valuation of $2, $2 and coarse feedback, and $2
and precise feedback, respectively. Drop i subscripts for brevity. We assume that agents report
these quantities with additive errors that are distributed normally, identically, independent of
each other, and independent of true valuations, so that we observe

Ŝ = S + ǫS

Ĉ = S + C + ǫC

P̂ = S + P + ǫP ,

where ǫz ∼ N(0, σ2) for z ∈ {S,C, P}. The second moments of our data are

V (Ŝ) = V (S) + σ2

V (Ĉ) = V (S) + V (C) + 2Cov(S,C) + σ2

V (P̂ ) = V (S) + V (P ) + 2Cov(S,P ) + σ2

Cov(Ŝ, Ĉ) = V (S) + Cov(S,C)

Cov(Ŝ, P̂ ) = V (S) + Cov(S,P )

Cov(Ĉ, P̂ ) = V (S) + Cov(S,C) + Cov(S,P ) + Cov(C,P ).

This system is not point-identified as there are 7 parameters and 6 equations. However, we can
bound the parameters by imposing the requirements that variances be positive and correlation
coefficients within [−1, 1]. To bound σ2, note that

V (C) = V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)− 2σ2

V (P ) = V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )− 2σ2

Cov(C,P ) = Cov(Ĉ, P̂ ) + V (Ŝ)− Cov(Ŝ, Ĉ)− Cov(Ŝ, P̂ )− σ2,

1



Figure A-1: Noise Tests
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Plots probabilities of observing n(x) reported information values less than x under the null hypothesis that all

true information values are 0, for various values of x.

which implies the following must hold:

σ2 ≤ 1

2

(

V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)
)

σ2 ≤ 1

2

(

V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )
)

−1 ≤

(

Cov(Ĉ, P̂ ) + V (Ŝ)− Cov(Ŝ, Ĉ)− Cov(Ŝ, P̂ )− σ2
)

√
(

V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)− 2σ2
)(

V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )− 2σ2
) ≤ 1

The largest value of σ that satisfies these restrictions for our data is σ ≃ 26.4.
Now fix any x < 0 and let n(x) be the number of observations for which both Ĉi−Ŝi < x and

P̂i− Ŝi < x. Under the null hypothesis that Ci and Pi are bounded below by 0, the probability
that these inequalities hold for any agent i is at most ζ(x, σ2) ≡ P(ǫS ≥ max{ǫC , ǫP }−x), the
probability when Ci = Pi = 0. Note that this yields a very conservative test, since presumably
many subjects do value information. The bound can be calculated numerically for any given
x and σ2, and consequently the probability that Ĉi − Ŝi < x and P̂i − Ŝi < x hold for n(x) or

2



more out of N individuals in a sample can be bounded by

p(x, σ2) ≡
N∑

m=n(x)+1

(
N

m

)

ζ(x, σ2)m(1− ζ(x, σ2))N−m. (21)

We calculated p(x, σ2) for σ = 26.4 and for a variety of thresholds x. Figure A-1 plots the
results. For any threshold below −60 we can reject the null at the 0.01 level.

A-2 Additional Tables

Table A-1: Quiz Performance: Summary Statistics

Correct Incorrect Score
N Mean SD Mean SD Mean SD

Overall
Restricted Sample 656 10.2 4.3 2.7 2.1 7.4 4.8
Full Sample 1058 9.7 4.3 3.0 2.4 6.8 4.9

By Quiz Type
1 79 8.1 3.1 1.7 1.2 6.4 3.3
2 85 13.0 2.9 2.7 2.1 10.3 3.4
3 69 8.9 3.3 3.0 2.1 5.9 3.8
4 74 12.2 3.8 3.1 2.3 9.2 4.6
5 75 6.5 1.6 4.0 2.3 2.5 2.8
6 63 14.5 4.5 2.3 1.7 12.3 4.7
7 73 7.6 2.6 2.2 1.7 5.4 3.1
8 69 13.6 2.8 3.2 1.8 10.4 3.3
9 69 7.3 3.5 2.7 2.8 4.7 4.5

By Gender
Male 314 10.6 4.2 2.7 2.3 7.9 4.8
Female 342 9.7 4.4 2.8 2.0 6.9 4.8
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Table A-2: Conservative and Asymmetric Belief Updating

Regressor Round 1 Round 2 Round 3 Round 4 All Rounds Unrestricted

Panel A: OLS
δ 0.777 0.946 0.943 1.009 0.937 0.888

(0.042)∗∗∗ (0.020)∗∗∗ (0.030)∗∗∗ (0.027)∗∗∗ (0.016)∗∗∗ (0.014)∗∗∗

βH 0.448 0.400 0.456 0.568 0.487 0.264
(0.021)∗∗∗ (0.020)∗∗∗ (0.024)∗∗∗ (0.035)∗∗∗ (0.016)∗∗∗ (0.013)∗∗∗

βL 0.477 0.422 0.457 0.471 0.454 0.211
(0.033)∗∗∗ (0.025)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗ (0.016)∗∗∗ (0.011)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.471 0.492 0.989 0.030 0.083 0.000
N 420 413 422 458 1713 3996
R2 0.754 0.882 0.874 0.864 0.846 0.798

Panel B: IV
δ 1.262 0.953 1.058 0.943 1.032 0.977

(0.325)∗∗∗ (0.098)∗∗∗ (0.136)∗∗∗ (0.157)∗∗∗ (0.078)∗∗∗ (0.060)∗∗∗

βH 0.617 0.401 0.456 0.578 0.496 0.273
(0.129)∗∗∗ (0.024)∗∗∗ (0.025)∗∗∗ (0.041)∗∗∗ (0.016)∗∗∗ (0.013)∗∗∗

βL 0.414 0.421 0.450 0.477 0.446 0.174
(0.052)∗∗∗ (0.025)∗∗∗ (0.028)∗∗∗ (0.033)∗∗∗ (0.015)∗∗∗ (0.027)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.231 0.567 0.864 0.031 0.044 0.004
First Stage F -statistic 4.85 14.47 11.24 8.40 14.86 20.61
N 420 413 422 458 1713 3996
R2 - - - - - -

Notes:

1. Each column in each panel is a regression. The outcome in all regressions is the log posterior odds ratio. δ is the coefficient on the log prior
odds ratio; βH and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. Bayesian updating
(for both biased and unbiased Bayesians) corresponds to δ = βH = βL = 1.

2. Estimation samples are restricted to subjects whose beliefs were always within (0, 1). Columns 1-5 further restrict to subjects who updated
their beliefs in every round and never in the wrong direction; Column 6 includes subjects violating this condition. Columns 1-4 examine
updating in each round separately, while Columns 5-6 pool the 4 rounds of updating.

3. Estimation is via OLS in Panel A and via IV in Panel B, using the average score of other subjects who took the same (randomly assigned)
quiz variety as an instrument for the log prior odds ratio.

4. Heteroskedasticity-robust standard errors in parenthesis; those in the last two columns are clustered by individual. Statistical significance is
denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A-3: Updating is not Differential by Prior

Regressor Round 1 Round 2 Round 3 Round 4 All Rounds Unrestricted

Panel A: OLS
δ 0.908 0.944 0.952 0.958 0.944 0.885

(0.029)∗∗∗ (0.019)∗∗∗ (0.027)∗∗∗ (0.022)∗∗∗ (0.012)∗∗∗ (0.014)∗∗∗

δH -0.150 -0.040 -0.020 0.058 -0.037 0.006
(0.053)∗∗∗ (0.030) (0.046) (0.046) (0.023) (0.026)

βH 0.361 0.295 0.334 0.434 0.369 0.264
(0.018)∗∗∗ (0.017)∗∗∗ (0.021)∗∗∗ (0.030)∗∗∗ (0.013)∗∗∗ (0.013)∗∗∗

βL 0.268 0.270 0.302 0.354 0.298 0.212
(0.026)∗∗∗ (0.020)∗∗∗ (0.022)∗∗∗ (0.024)∗∗∗ (0.012)∗∗∗ (0.011)∗∗∗

N 612 612 612 612 2448 3996
R2 0.808 0.891 0.875 0.860 0.854 0.798

Panel B: IV
δ 0.876 1.070 1.398 0.830 1.071 0.976

(0.513)∗ (0.187)∗∗∗ (0.266)∗∗∗ (0.164)∗∗∗ (0.109)∗∗∗ (0.097)∗∗∗

δH 0.092 -0.287 -0.544 0.166 -0.167 0.002
(0.530) (0.215) (0.311)∗ (0.238) (0.131) (0.124)

βH 0.409 0.292 0.335 0.437 0.369 0.273
(0.045)∗∗∗ (0.018)∗∗∗ (0.021)∗∗∗ (0.037)∗∗∗ (0.012)∗∗∗ (0.014)∗∗∗

βL 0.277 0.243 0.216 0.385 0.268 0.175
(0.149)∗ (0.044)∗∗∗ (0.063)∗∗∗ (0.050)∗∗∗ (0.027)∗∗∗ (0.041)∗∗∗

N 612 612 612 612 2448 3996
R2 - - - - - -

Notes:

1. Each column in each panel is a regression. The outcome in all regressions is the log posterior odds ratio. δ is the coefficient on the log prior
odds ratio; δH is the coefficient on an interaction between the log prior odds ratio and an indicator for a positive signal; βH and βL are the
estimated effects of the log likelihood ratio for positive and negative signals, respectively. Bayesian updating corresponds to δ = βH = βL = 1
and δH = 0.

2. Estimation samples are restricted to subjects whose beliefs were always within (0, 1). Columns 1-5 further restrict to subjects who updated
their beliefs at least once and never in the wrong direction; Column 6 includes subjects violating this condition. Columns 1-4 examine updating
in each round separately, while Columns 5-6 pool the 4 rounds of updating.

3. Estimation is via OLS in Panel A and via IV in Panel B, using the average score of other subjects who took the same (randomly assigned)
quiz variety as an instrument for the log prior odds ratio.

4. Heteroskedasticity-robust standard errors in parenthesis; those in the last two columns are clustered by individual. Statistical significance is
denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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