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With mandatory participation, efficiency is attainable also in many-player situations.

But if participation is voluntary, and there are more than two players, there is a large
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1 Introduction

If rational and fully informed people are free to contract, property rights are completely

specified, and there are no transaction costs, will they always be able to reach an agreement

to behave efficiently? According to Coase (1960), they will.1 By and large, formal contract

theory embraces Coase’s view (e.g., Bolton and Dewatripont, 2005, page 7). However,

the so-called Coase theorem is an informal argument based on a few stylized examples

rather than a precise mathematical result, and there are at least two reasons to question

the argument. First, Coase’s stylized examples are special; they are all concerned with

unilateral externalities among two parties, such as straying cattle that destroy crops on a

neighbor’s land. In general, externalities can be multilateral and non-additive. Second,

Coase does not consider the detailed process of proposing and accepting contracts. In

essence, he assumes that in the absence of transaction costs any efficiency gains will be

realized through appropriate transfer payments. For there to be a theorem rather than

merely a presumption, the efficiency of the agreement should be deduced from an analysis

of the contracting process. A modern formulation of the question could therefore be: If

the contracting process is adequately formulated as a non-cooperative game, will that game

possess equilibria in which players arrive at efficient agreements?

To motivate our choice of model, let us begin by explaining what we mean by a contract

and a contract negotiation. According to the Academic Edition of Encyclopaedia Britannica,

a contract is

a promise enforceable by law. The promise may be to do something or to

refrain from doing something. The making of a contract requires the mutual

assent of two or more persons, one of them ordinarily making an offer and

another accepting. If one of the parties fails to keep the promise, the other is

entitled to legal recourse.

Accordingly, we define a contract as a mutually agreed mapping from action profiles to

monetary transfers. These monetary transfers regulate compensation both when parties

comply with the contract’s intention and when they deviate from it. Note that our definition

is sufficiently general to encompass a wide range of commonly observed contracts: (a) One

party may promise to take a specific action in return for monetary payment, accepting to

pay a penalty if any other action is taken. (b) One party may agree to work for the other,

in return for a payment that depends on the amount of effort that is exerted – such as a

piece rate or a bonus scheme. (c) Several parties may agree on how to divide up an income

as a function of how each of them contributes to generating it.

More formally, a contract specifies monetary transfers as a function of actions taken in

some situation, or action game, G. Contract negotiations are viewed as multi-stage process.

1Coase did not think that the case of zero transaction costs is realistic; he used it as a benchmark to
emphasize the need to study positive transaction costs.
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At Stage 0, players learn the situation G and decide whether to take part in negotiations or

not. At Stage 1, players propose contracts. At Stage 2 players decide which contracts to sign.

A contract becomes valid if and only if it is signed by all players who may pay or receive

transfers under the contract.2 At Stage 3, upon seeing the outcome of the negotiations,

players play G modified by the agreed transfers. The whole interaction is thus a four-stage

game, call it ΓV (G). If participation in negotiations is mandatory, as is implicitly assumed

in parts of the literature, there are only the last three stages. We denote this three-stage

game Γ(G).

A central observation is that the signing stage involves a coordination game, in which

each concerned player may become pivotal. Thus, if the no-contract outcome is expected

to be less favorable for each player, signing by all is incentive compatible. At first blush,

it thus seems simple to sustain cooperation. But upon closer inspection, the issue is more

intricate.

Our main results can be summarized as follows: (i) Under mandatory participation

(Γ(G)), the model always admits a large range of strategy profiles of G to be played in

a subgame-perfect Nash equilibrium. Some of the equilibrium outcomes are efficient, but

others are inefficient. Under this solution concept, Γ(G) thus always admits a weak form

of the Coase theorem. (ii) However, if we additionally insist that equilibria should be

consistent (Bernheim and Ray, 1989), and there are no more than two players, only efficient

outcomes are selected. That is, with two players, consistency implies a strong form of

the Coase theorem for Γ(G). (iii) Under voluntary participation (ΓV (G)), on the other

hand, there is a large and relevant class of situations G involving more than two players for

which all consistent equilibrium outcomes of ΓV (G) are inefficient. That is, under voluntary

participation, the Coase theorem does not hold in any form for this class of situations. The

reason is that it is tempting to free-ride on others’ agreements, since these others cannot

credibly threaten to behave inefficiently upon such strategic non-participation.

Finally, our model invites a simple definition of property rights. A property right is the

right to to put a price on an action. For actions taken by oneself, a property right is the right

to take the action for free. For actions taken by another party, a property right is the right to

insist that the action is not taken, except against compensation determined by the owner.3

Our definition encompasses property rights over assets, but is much broader. Our above

results describe outcomes for the case in which everyone initially owns all their personal

actions, so property rights are widely dispersed. The more general version of the model has

an additional stage between the signing stage and the action stage, at which action owners

unilaterally determine prices for any actions that are not covered by a contract.

In all situations G we find that there is always some allocation of property rights that

2We shall also consider the case in which some players, at Stage 2.5, have the right unilaterally to put
prices on actions that are not covered by a contract. See below.

3Insistence that the action is not taken effectively assumes a well-functioning legal system; there must
be a deterrent threat of punishment in case the action is taken nonetheless.
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guarantee efficient outcomes. Indeed, if one player owns all action rights – except for a single

default action for each player – the outcome will be efficient. Since efficiency is not generally

attainable under dispersed property rights, this result contradicts Coase’s assertion that, in

the absence of transaction costs, the allocation of property rights has only distributional

consequences.

The paper is organized as follows. Section 2 describes our contribution’s relationship to

the existing literature. Section

2 Related literature

Economists have long understood that well-designed transfer schemes can alleviate conflicts

of interest and sustain cooperation. However, much of the early literature presupposes that

at least the general features of these transfer schemes are imposed by a third party – a

“social planner”. For example, this is the approach taken by Varian (1994b), building on

previous work by Guttman (1978).4 Among other things, Varian shows that the Prisoners’

Dilemma is resolved if players can announce binding promises of payments in return for

cooperation by the opponent. More generally, we know from mechanism design theory that,

under symmetric information, a wide range of efficient outcomes can be attained if people

are confined to resolve their conflicts through appropriately designed mechanisms; see Moore

(1992) for a survey.

In Myerson (1991, Chapter 6), an outside mediator proposes a contract, and the players’

decisions are to accept or reject the contract proposal. If all players accept, they are forced

to play the associated action profile. Myerson shows that a large set of outcomes, some of

which are efficient, can typically be sustained as equilibria of such contract-signing games.

Our approach is similar to Myerson’s in adopting the view that contract-signing is a

coordination game in which each player becomes pivotal. However, our analysis differs from

Myerson’s in three respects. First, we do not assume that a signed contract directly forces

players’ actions. Instead, we assume that if the players accept a contract, they have to make

the transfers that the contract specifies for the specific action profile that is subsequently

played – which may or may not be the profile that the contract “intends”. Second, we

assume that contracts are proposed non-cooperatively by the players themselves. Indeed,

we insist that all players have the opportunity to propose contracts; we do not presume that

some player or players, the principals, are granted exclusive proposal rights. Third, Myerson

only considers the case in which all players have to participate. We also consider the case

in which players may refrain from taking part in contract negotiations.

With respect to the modeling approach, our analysis is perhaps most closely related to

Jackson and Wilkie (2005) and Yamada (2003). Jackson and Wilkie and Yamada consider

non-cooperative promise games, where players themselves are quite free to decide on the

4See also Guttman (1987), Danziger and Schnytzer (1991), Guttman and Schnytzer (1992), and Varian
(1994a).
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shape of transfers. That is, players are not confined to making a specific sort of promise,

as in Varian (1994b). However, Jackson and Wilkie do not admit contracts in our sense

of the word. Instead, their model assumes that players issue unilateral promises to pay

non-negative transfers to opponents depending on realized action profiles. Equilibria of this

promise game have rather different properties from those of our contract-proposal game. We

return to this issue in Section 7.

While our model takes a more optimistic view of contracting opportunities than Jackson

and Wilkie (2005), it arguably takes a less optimistic view than the literature about “con-

tracting on contracts”; see, e.g., Katz (2006), Kalai et al. (2010), Yamashita (2010), and

Peters and Szentes (2012). There, each player may use a unilateral contract (or promise) to

commit to their own action as a function of the contracts of other players. By construction,

there is no explicit mutual assent by all players, but cooperation may arise in equilibrium

nonetheless, as the commitments intertwine. In Yamashita (2010), intertwining is accom-

plished by letting promises depend on messages that are sent after all promises are observed

(messages effectively report on these promises). The contracting-on-contracts approach

is extremely powerful in its ability to sustain cooperative outcomes; indeed it can attain

efficiency despite disallowing explicit transfer payments (i.e., utility is non-transferable).5

However, it also makes great demands on contract enforcers. In effect, the enforcers are

asked to verify the contracting process, including any ultimately “unsuccessful” promises

(or at least messages about these). By contrast, our set-up merely requires that enforcers

observe a single final agreement linking transfers to behavior in G.6

Our work is also related to the principal-agent literature, most closely with the work

on contracting with externalities, and especially Segal (1999). There, a principal trades

with several agents, the trade with one agent may impose externalities on other agents,

and there is an undesirable no-trade outcome in case of no contract. In our vocabulary,

this setting translates to a game G with a unique and bad Nash equilibrium, and with a

particular asymmetric payoff structure; one player, the principal, is not taking any action,

but is heavily affected by actions of others (the agents). But there is a major difference

with respect to commitment possibilities. In Segal’s model, only one player can propose

a contract, and this proposal can be made before any participation decision by the other

players. Segal (1999, Proposition 10) shows that, if there is no restriction on the space

of available contracts a principal can implement the efficient outcome and extract all the

surplus over and above the no-trade outcome. In the case of positive externalities, the

contract threatens to suspend trade with all agents if any single agent refuses the contract’s

terms. Thus, each agent becomes pivotal, as in Myerson (1991). This outcome corresponds

to one of the extreme points in the set of equilibria described in our Theorem 1. Since

5Yamada (2003) may be seen as a link between the two approaches, as his contracts specify conditional
transfers, rather than actions, while also conditioning on opponents’ contracts.

6However, in Appendix C we discuss an extension of the model in which some form of intertwining seems
necessary in order to sustain efficiency.
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Segal does not admit strategic non-participation decisions by agents prior to the principal’s

proposal, inefficient free-riding does not occur when contracts are unrestricted.

The model of common agency, due to Bernheim and Whinston (1986), is more distantly

related. There, several principals promise conditional payments to a single agent, who does

not offer payments. In terms of the game G, it is again quite special, as only one player (the

single agent) is taking an action. In terms of contracting, Bernheim and Whinston’s model

involves unilateral promises rather than multilateral agreements (but note that the promised

payments are not restricted to be non-negative, unlike the promises studied by Jackson

and Wilkie, 2005). Finally, there is a default action, called non-participation, which never

involves payments. If the agent participates, i.e., takes any other action, all the principals’

promises must be honored. Translated to our model, it is as if the interaction starts at Stage

2.5, with no contracts having been signed, and each principal then exercising her property

rights to price those actions that she owns. Much of Bernheim and Whinston’s analysis is

devoted to the problems that are posed by non-observability of the agent’s action, but it

also provides powerful results for the complete information environment. In particular, the

common agency model then has equilibrium outcomes in which the contracts jointly create

an incentive for the agent to take the efficient action. In fact, all strong equilibrium outcomes

have this feature whenever non-observability does not pose a problem; see Bernheim and

Whinston’s Theorem 2.

Turning to the issue of participation, at least several previous strands of literature have

investigated the possible inefficiencies that may arise in non-cooperative coalition formation.

Since the formation of a coalition is typically interpreted as participation in contract nego-

tiations, it is natural to consider how our fully non-cooperative approach relates to these

partly cooperative approaches.

An early strand of cooperative analysis had argued that many cooperative games have

an empty core, and thus efficiency is not generally implied by voluntary negotiations; see

especially Aivazian and Callen (1981). However, as pointed out by Coase (1981) a non-

prediction is different from a failure prediction. Only if the prediction is that the outcome

is inefficient will the Coase theorem be overturned.

Aumann and Myerson (1988) study a non-cooperative game in which players’ strategies

are what bilateral links to form, with the resulting graph representing a cooperation struc-

ture, in the sense of Myerson (1977).7 They show that all stable cooperation structures may

involve inefficient outcomes. Intuitively, a subset of players may prefer to cooperate exclu-

sively among themselves, because if additional players are included, the per player payoff is

likely to be reduced. This inefficiency result is quite different from our inefficiency results,

and depends on the sequential set-up that precludes the players from discussing the terms

of trade simultaneously with the formation of links. Moreover, in the Aumann-Myerson

framework, the payoff of a player with no links is unaffected by the links that form between

7The Myerson-value is a generalization of the Shapley-value in the sense that it coincides with the Shapley
value when all players are connected.
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other players, whereas in our framework, it is the positive or negative externalities from a

contract on outsiders that threaten efficiency.

A third strand of analysis, which is more closely related to our approach, is the literature

on non-cooperative coalition formation that emphasizes externalities from coalition members

on outsiders. Seminal contributions include d’Aspremont et al (1983), in the context of

cartels, Kamien and Zhang (1990) in the context of mergers, and Carraro and Siniscalco

(1993) and Barrett (1994) in the context of international environmental agreements. Each

of these contributions relates to quite specific situations. With the exception of Kamien and

Zhang (1990), they study coalitional stability without a detailed analysis of the contracts

between coalition members.

These contributions were followed by a more abstract “second-generation” analysis of

coalition-formation due to, among others, Chatterjee et al (1993), Ray and Vohra (1997),

and Seidmann and Winter (1998).8 In these “hybrid” models, the environment is usually

more general and the coalition-formation process more detailed. On the other hand, the

game G is suppressed, and in place of our modified game G̃ there are reduced-form payoffs

associated with each coalition structure. Importantly, it is an axiom that coalitions are

internally efficient. (The models are referred to as hybrids, because they comprise both

non-cooperative and cooperative elements.) That is, this literature takes for granted that

players who eventually engage in contracting will be able to maximize their joint payoff. Any

inefficiencies arise because of externalities on players that do not participate in contracting.

By contrast, in our non-cooperative model contracting does not make any assumptions about

outcomes, and it does not generally imply internal efficiency, or even a unique equilibrium

payoff for the players who engage in contracting. The multiplicity of outcomes among

negotiators in turn can have consequences for participation in negotiations. Thus, although

some insights about the role of externalities are related, our non-cooperative analysis does

not offer a general justification for the hybrid approach.

Finally, our findings are related to the literature on “folk theorems” in repeated games.

It has been known at least since Aumann (1959) that in infinitely repeated games without

discounting, all feasible and individually rational outcomes can be sustained as Nash equi-

libria of the supergame. Closely related folk theorems are now known to hold in the limit

as discounting goes to zero, and even if equilibria are required to be subgame-perfect; see

Fudenberg and Maskin (1986). Aumann (1959) also showed that the solution set is much

smaller, and is often empty, if equilibria are required to be strong. However, strong equilib-

rium is a very restrictive criterion, and several authors have subsequently proposed weaker

notions of coalition-proofness. Among those concepts, we have chosen to focus on consistent

equilibrium, partly because it has the virtue that the solution set is never empty. Although

our setting is quite different, it shares with the supergame literature the notion that the mul-

tiplicity of equilibrium payoffs in future subgames (e.g., the signing stage) can help support

8For an extension of this line of work to the setting of ongoing interactions, see Konishi and Ray (2003),
Gomes and Jehiel (2005), Bloch and Gomes (2006), and Hyndman and Ray (2007).
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cooperation now (e.g., the proposal stage).9 Likewise, our set of subgame-perfect equilibria

has the flavor of a folk theorem, and we can use the same (or similar) notions of multilat-

eral deviation to refine this large equilibrium set. We think that these close analogies are

interesting. However, just as our analysis abstracts from enforcement problems – which are

the primary focus of the supergames literature – that literature largely abstracts from the

contracting process and participation issues that are our main focus.

Concerning the interpretation of our results, perhaps the main question is: Does free-

riding on others’ contracts constitute a violation of the Coase theorem? In the coalition-

formation literature described above, several authors have interpreted their results in this

way; see Ray and Vohra (1997) for a particularly clear statement.10 However, others argue

instead that such free-riding is due to an incomplete specification of property rights; see,

e.g., Libecap (2014). Resolving this question requires a clear definition of what it means

for property rights to be completely specified. Under our definition, which we believe to

be consistent with legal practice as well as with existing definitions in the economics lit-

erature, property rights are completely specified when all actions are contractible. Since

we find that inefficiencies can occur despite unrestricted contractibility (and also maintain-

ing the assumptions complete information and zero transactions costs), and the magnitude

of such inefficiency depends on who has what rights, we conclude that Coase was wrong:

Well-specified property rights do not suffice to produce efficient final outcomes, and the

distribution of property rights across agents does affect the degree of efficiency.

It is remarkable that in later writings Coase (1974, page 375) himself implicitly came

to touch on the impact of the distribution of property rights. In his detailed analysis of

British lighthouses, which for many years were largely privately owned, Coase summarizes

the smooth workings of private contracting: “In those days, shipowners and shippers could

petition the Crown to allow a private individual to construct a lighthouse and to levy a

(specified) toll on ships benefitting from it.” Notice how, on this occasion, Coase seems to

take for granted that it is better for the property rights to the lighthouse services to rest

with a single party, such as the provider of lighthouse services, rather than with all the

potential users – among whom the free-rider problem might have been severe.11

9Benôıt and Krishna (1985) develop this theme in the context of finitely repeated games.
10For related discussions, see also Dixit and Olson (2000) and Ellingsen and Paltseva (2012). However, in

neither of these two cases is there a watertight argument that outcomes will be inefficient. Dixit and Olson’s
model has an efficient equilibrium, whereas Ellingsen and Paltseva effectively assume that non-participation
in contracting also entails a commitment to a particular action in G. While such commitment technologies
are plausible in some of the settings that they study, the assumption is clearly restrictive.

11It is perhaps tempting to think that outcomes would again turn efficient if such users were allowed to
trade their property rights. However, there would instead be a free-rider problem in the market for property
rights, as recognized in the analogous context of take-overs by Grossman and Hart (1980). For a relevant
and striking real-world application, see the analysis of oil-field unitization by Libecap and Wiggins (1984).
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3 Example

The following simple example, involving multilateral and non-additive externalities, suggests

why a Coase theorem holds in the case of two players and provides a stepping stone for the

remainder of the paper. Two ranchers let their cattle graze on the same field. The animals

sometimes stray. Suppose both ranchers suffer equally when cattle stray, and that either or

both of them can take action to contain the cattle, let’s say by herding them (take action

H). The alternative is to be lazy and do nothing (take action L). The private cost of herding

is 5. If only one of them engage in herding, the benefit to each is 4 (total benefit is 8). If

both engage, the benefit to each is 7, so the total benefit is 14. Clearly, the best outcome

arises when both engage, since this yields a total net gain of 2 · 7− 2 · 5 = 4 as compared to

the net gain of 2 · 4− 5 = 3 in case only one of them engages. However, without a binding

contract, neither will perform the herding; the private cost of herding, 5, is always larger

than the private gain, which is either 4 or 3. The example boils down to the Prisoners’

dilemma game of Jackson and Wilkie’s Example 1, reproduced in Figure 1.

H L

H 2, 2 −1, 4

L 4,−1 0, 0

Figure 1: A Prisoners’ Dilemma

Now, suppose the ranchers are at liberty to propose and accept contracts of the form

(tHH , tHL , tLH , tLL), where tij denotes the transfer from rancher 1 to rancher 2 in case they

end up playing the action profile (i, j). More precisely, let there be a first stage in which

both simultaneously propose contracts and a second stage at which each is at liberty to

sign any one of the proposals, or none.12 A court will costlessly enforce all agreed transfers.

Suppose one of the ranchers make the proposal (0,−(2 + ε), 2 + ε, 0) and both sign. Then,

the original situation (Figure 1) is transformed into the game in Figure 2.

H L

H 2, 2 1 + ε, 2− ε
L 2− ε, 1 + ε 0, 0

Figure 2: The modified game

If ε > 0, it is easy to check that (H,H) is a unique and strict equilibrium.

Let us sketch why (H,H) can also be sustained in equilibrium when both ranchers make

simultaneous contract proposals. Consider the following pair of strategies. At the proposal

stage, each player makes the proposal (0,−(2+ε), 2+ε, 0). At the signing stage, each rancher

12Technically, we could allow each rancher to sign multiple contracts, but that raises a number of issues
that are only distracting at this point. We will address them below.
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signs rancher 1’s proposal if and only if it is this expected proposal. Conversely, each rancher

signs rancher 2’s proposal if and only if it is the expected proposal and rancher 1 fails to

make the expected proposal. This strategy profile forms a subgame-perfect equilibrium, as

is easily checked.13 Section 3 shows how this insight generalizes.

The above contracting game also has inefficient equilibria. One inefficient equilibrium is

that no contract is ever signed. (If each player expects the opponent not to sign any contract,

there is nothing to gain by signing oneself.) However, if we impose renegotiation-proofness,

such inefficient equilibria vanish.

On the other hand, we shall show that inefficient continuation equilibria would constitute

useful threats in the case of more than two players and endogenous participation. Due to

such threats, efficient outcomes are attainable in subgame-perfect equilibrium even if players

are free not to participate in negotiations. But since inefficient continuation equilibria are

not renegotiation-proof, the very argument that supported efficiency in the case of two

players undermines it in the case of more players.14

4 Definitions

Let G be a finite n-player game, called “the action game.”15 The set of players is denoted

N = {1, ..., n}. Player i’s set of pure strategies is denoted Xi, and the set of all pure strategy

profiles is X = ×iXi. Player i’s set of mixed strategies is ∆(Xi), and the set of all mixed

strategy profiles is ∆ = ×i∆(Xi). Generic elements of Xi, X, ∆(Xi), and ∆ are denoted

xi, x, µi and µ respectively. Players’ preferences are given by a von Neumann-Morgenstern

utility function Ui : ∆→ R. As usual, we let Ui(x) denote Player i’s utility under the mixed

strategy profile putting all the probability on the pure strategy profile x.

Before choosing their strategies from ∆, the players engage in contracting. A contract

t specifies for each pure strategy profile x a vector of net transfers. That is, a contract is

an n-dimensional function t : X → Rn, where the i’th component ti(x) denotes the transfer

from Player i (which may be positive or negative). In this way, Player i’s final payoff under

13Recall that if no contract is signed by both ranchers, each rancher ends up with a payoff of 0. Consider
unilateral deviations from the posited strategy profiles, beginning at the signing stage. (i) If proposals are
as expected, we have already argued that rancher 2 is better off signing rancher 1’s proposal (expecting that
rancher 1 will do so). Likewise, rancher 1 is better off signing the own proposal if expecting that rancher 2
will sign. (ii) If rancher 1 deviates at the proposal stage, the expectation is that rancher 2’s proposal will
be signed, so this does not benefit rancher 1. If only rancher 2 deviates at the proposal stage, it does not
matter, as rancher 1’s contract proposal will still be signed.

14Another problem emphasized by Jackson and Wilkie arises if players can make unilateral promises in
addition to their standard contract proposals. Specifically, suppose that Player 1 proposes the agreement
described above (Figure 2), and that Player 2 merely makes a unilateral promise to transfer slightly above
1 in case Player 1 plays H. At the signing stage, Player 2 will then not sign Player 1’s proposal, and go on
to earn 3 instead of 0. The only way for Player 1 to avoid this outcome is to also make unilateral promises,
and making them conditional on Player 2 not signing 1’s contract. Section 5 explores this issue.

15It would be desirable to also consider games with a continuum of strategies, but due to technical
complications we refrain from doing so here.
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contract t and strategy profile x is denoted

πi(x) = Ui(x)− ti(x).

Let π(x) = {π1(x), ..., πn(x)} . For each strategy profile x, a contract must satisfy the budget

balance constraint
∑n

i=1 ti(x) = 0.16 Let F be the set of feasible (i.e., budget-balanced)

contracts. Thus, for each x, the set of payoff profiles that may be induced by some contract

t ∈ F is

Π(x) =

{
π(x) :

∑
i∈N

πi(x) =
∑
i∈N

Ui(x)

}
.

That is, a contract induces a re-distribution of the payoffs associated with each strategy

profile. Similarly, for a mixed startegy profile µ, the set of feasible contracts is

Π(µ) =

π(µ) :
∑
i∈N

πi(µ̂) =
∑
i∈N

Ui(µ) =
∑
i∈N

 ∑
x∈supp(µ)

µ(x) · Ui(x)

 .

We say that a strategy profile x is efficient if it maximizes total payoff, that is, if it

belongs to the set arg max
∑

i∈N Ui(x). We shall often be interested in efficient outcomes

that yields each player at least what the player can guarantee herself. For this purpose, let

vi(G) = max
µi

min
µ−i

Ui(µi, µ−i)

denote player i’s maximin payoff, let

ui(G) = min
µ∈NE(G)

Ui(µ),

(where NE(G) denotes the set of Nash equilibria of G) be player i’s lowest payoff in any Nash

equilibrium of G, and let uudi (G) denote player i’s lowest payoff in any Pareto-undominated

equilibrium of G.

Finally, the following definition will prove useful.

Definition 1 Player i is said to be affected by contract t if and only if ti(x) 6= 0 for some

x.

Let N t denote the set of players that are affected by contract t. Conversely, N/N t are the

players who are unaffected by t. Finally, let G̃(t) denote the game G modified by contract

t – in other words, G̃(t) has G’s strategy set X, but is played with utilities πi(x) instead of

Ui(x).

16Of course, budget balance implies that the range of Ci could alternatively be expressed as Rn−1. Not
imposing budget balance, allowing the presence of a “source” or a “sink”, would beg the question why these
players are not modelled explicitly.
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4.1 The contract negotiation game

To begin with, we assume that participation in negotiations is mandatory. The contract

negotiation game has three stages.

At the proposal stage, henceforth called Stage 1, all players simultaneously make a

contract proposal from the set F . (Without affecting the results, we could admit a no-

proposal option too.) Let Player i’s proposal be denoted τi.

At the signature stage, henceforth called Stage 2, each player first observes all the pro-

posals. Then, each player individually chooses at most one contract proposal to sign.17 We

realistically assume that players have no say about contracts that do not directly affect

them.

Definition 2 A contract t is said to be signed if and only if all affected players j ∈ N t have

signed it.

Any contract t is legally binding if and only if it is signed. Let NS be the set of of players

whose proposals were signed, and let tS =
∑

i∈NS τi be the effective transfers. In case no

contract is signed, we say that tS = ∅.
At the action stage, henceforth called Stage 3, each player observes all the signature

decisions. They go on to play G̃(tS). Note that G̃(∅) = G.

We refer to the whole three stage game as Γ(G). We initially focus on subgame-perfect

Nash equilibria of Γ(G).

5 Outcomes under mandatory participation

Our first aim is to establish whether there is a subgame-perfect equilibrium of Γ(G) support-

ing the play of an efficient action profile. However, one might also wonder which other action

profiles might be supported. We therefore begin by proving the more general result that

any strategy profile, and any division of the associated surplus that gives each player i at

least her worst equilibrium payoff of G, can be sustained in a subgame-perfect equilibrium of

Γ(G). The basic idea is that a player who is affected by a contract proposal may be able, by

not signing it, to veto all outcomes that are worse for the player than the worst no-contract

outcome; however, the player can be couched to sign any other contract proposal through

the credible threat of a poor no-contract outcome in case the proposal is not signed.

Theorem 1 A strategy profile µ̂ ∈ ∆X and payoff profile π(µ̂) ∈ Π(µ̂) can be sustained in

a subgame-perfect Nash equilibrium of Γ(G) if πi(µ̂) ≥ ui(G) for all i.

17As shown below, this is not a restrictive assumption. However, it is worth emphasizing the assumption
that a player’s own proposal does not in any way affect the player’s ability to sign opponents’ proposals.
As shown by Ellingsen and Miettinen (2008, 2014), outcomes tend to be highly inefficient if players become
committed to not accepting outcomes that are worse than their own proposal.
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For expositional clarity we concentrate on the case of sustaining a pure strategy profile

x̂. The proof in case of a mixed strategy profile is relegated to the Appendix.18

The proof proceeds as follows: (i) Consider some candidate payoff vector. (ii) Show that

there exists a contract t that implements these payoffs in an equilibrium of G̃(t). (iii) Show

that Γ(G) has a subgame-perfect equilibrium in which t is proposed and signed.

Steps (i) and (ii) are easy. Consider any feasible profile of payoffs π(x̂), such that πj(x̂) ≥
uj(G). This profile can be implemented through the contract t̂ specifying the following net

transfers from each Player j,

t̂j(x) =


Uj(x)− πj(x) if x = x̂;

(n− 1)h if xj 6= x̂ and x−j = x̂−j;

−h if xj = x̂j and |{k : xk 6= x̂k}| = 1;

0 otherwise,

where

h = 1 + max
i,x′,x′′

[Ui(x
′)− Ui(x′′)] .

Note that
∑N

j=1 t̂j(x) = 0 for all strategy profiles x. To see that the contract ensures x̂ to

be an equilibrium of G̃(t̂), observe that, for all players j and strategies xj,

Uj(x̂)− t̂j(x̂) ≥ Uj(xj, x̂−j)− t̂j(xj, x̂−j),

or equivalently

πj(x̂) ≥ Uj(xj, x̂−j)− (n− 1)h

> uj(G),

where the first inequality uses the definition of t̂j(x) and the second uses the definition of h

together with the facts that n ≥ 2, Uj(xj, x̂−j) ≤ maxx Uj(x), and uj(G) ≥ minx Uj(x).

It remains to show that t̂ may be proposed and signed in an equilibrium of Γ(G). This is

slightly tedious, as we have to specify complete strategy profiles, and there are many kinds

of off-equilibrium nodes. Consider the profile of strategies:

Stage 1: Each player i makes the proposal τi = t̂.19

Stage 2. If τ1 = t̂, each player signs τ1. If τ1 6= τ2 = t̂, each player signs τ2, and so on.

If no player offers t̂, players’ signing decisions are done in a way that results in a Pareto-

undominated outcome. If there are several such outcomes, choose the one that is the best

for player 1. If there are several of those, choose the one that is best for Player 2, etc. As

18The only difference in the proof for a mixed strategy profile µ̂ is establishing existence of a system of
feasible transfers defined on the support of µ̂ such that each player gets exactly the payoff πj(µ̂) by playing
any strategy in the support of µ̂j given that the other players play µ̂−j . The definition of the transfers off
the support of µ̂ and the rest of the proof are exactly similar to the case of sustaining a pure strategy profile.

19As discussed below, we use this construction in which all players’ contract proposals are identical for
simplicity only.
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each signing-stage subgame is finite, backward induction ensures existence of such a signing

profile.20

Stage 3. (i) If some proposal τi = t̂ was signed, play x̂. (ii) if τ1 = t̂ is signed by all but

Player k, play Player k’th worst Nash equilibrium in the resulting subgame G̃ = G.21 (iii) If

τ1 6= τ2 = t̂ and τ2 is signed by all but Player k, play Player k’th worst Nash equilibrium in

the resulting subgame G̃ = G. (iv) In all other situations, play the worst Nash equilibrium

of G̃ = G from the perspective of Player 1 (if there are multiple such equilibria, play the

worst of them from the perspective of Player 2, etc.).

Let us show that no player will ever find it optimal to deviate from the suggested equi-

librium path, starting with Stage 3 and moving forwards.

At Stage 3, if tS = t̂, x̂ represents a Nash equilibrium, as is already shown. In all other

situations, the rule above prescribes a Nash equilibrium of G̃(tS), so no player has any

incentive to unilaterally deviate.

At Stage 2, consider first the branch along which τ1 = t̂. Then, a unilateral deviation

by Player k (not to sign τ1) entails tS = ∅, and Player k’s worst equilibrium of G being

played at Stage 3. Since uk(G) ≤ πk, the deviation is not profitable. This takes care of

deviations on the equilibrium path. Off the path, an analogous argument applies along the

branch τ1 6= τ2 = t̂. Finally, along any other off-equilibrium branch, each player is content

not to sign any contract proposal; as opponents are expected not to sign, tS = ∅ regardless

of the own signing decision.

At Stage 1, only Player 1 deviations τ1 6= t̂ affect the subsequent play. After such a

deviation, τ2 = t̂ will be signed instead, entailing exactly the same outcome as if Player 1

does not deviate. Thus, this is not a profitable deviation, concluding the proof.

Three observations are in order. First, there are many other strategy profiles of Γ(G)

that can sustain the same set of equilibrium outcomes. Specifically, it is not necessary to

have players propose identical contracts. The important feature is that the player whose

contract is supposed to be signed in equilibrium (here, Player 1) is deterred from deviating

by the expectation that the deviation will be punished through coordination on some other

contract proposal that is no more attractive to the player. Second, the transfers that are

used to sustain the equilibria are of the same order of magnitude as are the payoffs in G.

Each Player i can be induced to take the desired action through an incentive that does

not exceed the difference between the highest and lowest payoff in G (as is clear from the

definition of h). Third, the set of strategy profiles that may be sustained includes all efficient

profiles, or more formally:

Remark 1 Any efficient strategy profile x∗ ∈ X of any game G can be sustained in a

subgame-perfect Nash equilibrium of Γ(G).

20This latter part of the contract allows us to focus on Pareto-dominant outcomes off-equilibrium path.
While this feature it of no importance now, it will facilitate our subsequent analysis of consistent equilibria.

21Caveat: There could be several such equilibria, but since it does not matter which of them is played,
we skip devising a selection.
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The remark follows immediately from Theorem 1 and the fact that for any efficient

strategy profile x∗ and any Nash equilibrium profile µNE ∈ NE(G),

N∑
j=1

πj(x
∗) ≥

N∑
j=1

Uj(µ
NE) ≥

N∑
j=1

uj(G).

That is, the sum of payoffs at an efficient strategy profile x∗ weakly exceeds the sum of

payoffs at any Nash equilibrium of G, which in turn weakly exceeds the sum of the lowest

payoffs players can earn in any Nash equilibrium of G. Hence, there is always a way to

redistribute the sum of the payoffs at x∗ to satisfy the conditions of Theorem 1.

5.1 Extensions

The basic logic of Theorem 1 does not depend on the number of contracts that players are

allowed to sign. A bit more precisely, suppose each player still proposes only one contract,

but may sign as many proposals as she likes. Let Γ+(G) denote the corresponding contracting

game.

Remark 2 A strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂) such that πi(x̂) ≥ ui(G)

for each player i, can be sustained in a subgame-perfect Nash equilibrium of Γ+(G).

The proof is closely analogous to the proof of Theorem 1 and hence omitted (but available

on request). The intuition is plain enough: If all other players sign only a particular contract

proposal τi = t, a single player cannot expand the set of signed contracts beyond t. Note

that this remark also implies that any efficient outcome that yields each player a payoff

weakly above ui(G) can be sustained in a SPNE of Γ+(G).22

Above, we have identified a large set of equilibrium outcomes. Are there any others?

For n = 2 the answer is negative.

Remark 3 If n = 2, a strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂) can be sustained

in a subgame-perfect Nash equilibrium of Γ(G) if and only if πi(x̂) ≥ ui(G) for all i.

This extension of Theorem 1 is obvious, as each player can veto any contract by not signing

it, forcing the play of G unmodified by transfers.

However, in some games with n > 2, it is possible to sustain equilibria of Γ(G) in which

some players’ payoff is smaller than their worst equilibrium payoff of G. The reason is that

the implementation in Γ(G) of large-payoff non-equilibrium cells in G may involve contracts

22Evidently, there are many other constellations of assumptions that one might consider. For example,
may we still sustain efficient outcomes if contracts cannot specify negative transfers for anyone but the
contract proposer, as in Jackson and Wilkie (2005)? If each player may only sign one contract, we can
demonstrate that such a constraint on transfers precludes efficiency in some games. However, if players can
sign multiple contracts, efficiency can be restored, albeit at the cost of some complexity (proof available on
request).
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in which some players are not involved in transfers. Since their signature is not required,

they cannot veto the agreement. Even if they do their best at Stage 3, they may be unable

to sustain more than their maximin payoff. This observation will matter below.

5.2 Refinement: Consistency

In the context of contract negotiations with universal participation, it seems reasonable

that the players should be able to coordinate on desirable equilibria; any inefficient con-

tracts ought to be renegotiated. One way to capture this intuition is to impose the require-

ment that equilibria are consistent (Bernheim and Ray, 1989). In a one-stage game, the

set of consistent equilibria coincides with the set of Pareto-undominated equilibria (i.e., the

Pareto-frontier of the equilibrium set). In a finite multi-stage game, a consistent equilib-

rium is characterized recursively: any consistent equilibrium involves Pareto-undominated

equilibria in all subgames, both on and off the equilibrium path. Conversely, any subgame-

perfect equilibrium relying on the threat that deviations are punished through an inefficient

continuation equilibrium fails the consistency criterion.

Applying the consistency refinement to the set of equilibria described in Theorem 1 some-

times gets rid of all the inefficient equilibria, while leaving a subset of the efficient equilibria

intact. Specifically, as uudi (G) is player i’s lowest payoff in any consistent equilibrium of G

(i.e., in any Pareto-undominated equilibrium of the one-shot game G), we have the following

result.

Theorem 2 Suppose n = 2. Then, a strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂)

are supportable in a consistent equilibrium of Γ(G) if and only if x̂ is efficient and πi(x̂) ≥
uudi (G) for both players.

This is one part of our two-player Coase theorem (the second part concerns voluntary

participation). The proof proceeds recursively. At the last stage, if no contract has been

signed, players will coordinate on an undominated equilibrium of G. Thus, each player i gets

at least uudi (G) in this case. Hence, at the signing stage, it cannot be part of a consistent

equilibrium that players sign a contract that is expected to entail a payoff below uudi (G) to

any participant i in the ensuing subgame G̃. That is, consistent equilibrium payoffs must

exceed uudi (G). Conversely, any contract t that is expected to entail a payoff above uudi (G) to

each participant i in the ensuing subgame G̃ would only be signed in a consistent equilibrium,

if there is no alternative contract proposal t′ with an induced consistent equilibrium profile

which Pareto-dominates the equilibrium profile induced by t. In the latter case t′ must be

signed instead. We say that a proposal is efficient and consistent if it admits an efficient

outcome in a consistent equilibrium. Finally, then, at the proposal stage, at least one player

must make an efficient and consistent contract proposal yielding each player i at least uudi (G);

otherwise, the deviation to such a contract would be profitable, as it would be signed in the
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consistent continuation. This proves that all efficient outcomes yielding at least uudi (G) to

each player i can be sustained, while other outcomes cannot be sustained.

With more than two players, consistency does not imply efficiency. That is, in some

situations G there are inefficient consistent equilibrium outcomes of Γ(G)(in addition to the

efficient ones). Consider for example the three-player situation in Figure 3.

H L

H 2, 2, 2 1, 6,−10

L 6, 1,−10 2, 2,−3

Player 3: H

H L

H −1,−1, 3 −1, 0,−11

L 0,−1,−11 0, 0, 0

Player 3:L

Figure 3: Situation G admitting an inefficient consistent equilibrium of Γ(G)

If there are no transfers, the game G̃ = G has a single Nash equilibrium, namely (L,L,L)

with a payoff of (0, 0, 0). The efficient strategy profile is (H,H,H), and it is straightforward

to prove that this profile can be supported in a consistent equilibrium. Our claim here is

that (H,L,H), despite being inefficient, is also a consistent equilibrium outcome of Γ(G).

For example, suppose that the associated contract between players 1 and 2 yields each of

them 3.5, whereas player 3 obtains -10. Why is it that player 3 cannot propose a contract

inducing (H,H,H) with associated Pareto-improving payoffs of, say, (4,4,-2)? The reason is

that if players 1 and 2 were to sign that contract, player 3’s best response would be not

to sign it, obtaining instead the Nash equilibrium payoff of G, namely (0, 0, 0). Essentially,

off the equilibrium path, player 3 is better off by disrupting the contracting process than

by facilitating a multilateral contract that players 1 and 2 prefer to their bilateral contract.

Foreseeing this, players 1 and 2 prefer to stick to their bilateral contract.

This is not an isolated example; inefficient consistent equilibria frequently exists when

the worst Pareto-undominated Nash equilibrium of G yields more than the maximin payoff

for some player. In fact, we can formulate a sufficient condition for the efficiency of consistent

equilibria.

Theorem 3 Suppose n > 2, and vi(G) = uudi (G) for all players i. Then all consistent

equilibria of Γ(G) are efficient.

Intuitively, no player would ever sign a contract that yields her less than vi(G) on the

equilibrium path. Thus, in these situations, any contractually sustainable strategy profile

must yield at least uudi (G) to each player i. But if so, there can be no inefficient consistent

equilibrium; there would always be a profitable contract deviation at the proposal stage that

would be signed by all the parties, by exactly same logic as in Theorem 2.
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6 Voluntary Participation in Negotiations

So far, we have assumed that all players have to participate in negotiations. We now

investigate how voluntary participation affects our analysis.

Suppose that each player, before the contract proposal stage, may decide whether or

not to participate in contracting. That is, the player may commit to neither give nor

receive transfers. We assume that the participation decisions are observed before proposals

are made. Moreover, all players, also those that decide not to participate in contracting,

observe the contracting process and learn about any ensuing agreement.23 Let ΓV (G) denote

the corresponding full game. When n = 2, non-participation by any player implies that the

two players will be playing G unmodified by any transfer. With n > 2, it is possible to have

contracts between a strict subset of the players.

The possibility to refrain from participation in contracting does not affect the set of

subgame-perfect equilibrium outcomes.

Theorem 4 A strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂) can be sustained in a

subgame-perfect Nash equilibrium of ΓV (G) if πi(x̂) ≥ ui(G) for all i.

We know from Theorem 1 that all these outcomes are attainable in subgame-perfect

equilibrium under mandatory participation, so here we merely need to check that there

exist credible off-path threats such that a non-participation deviation is unprofitable. This

is a straightforward extension of the proof of Theorem 1.24

Let us next impose consistency again. In a two-player game, the possibility to refrain

from participation does not affect the solution set; we have a perfect analogue (and comple-

ment) to Theorem 2.

Theorem 5 Suppose n = 2. Then, a strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂)

are supportable in a consistent equilibrium of ΓV (G) if and only if x̂ is efficient and πi(x̂) ≥
uudi (G) for both players.

Since the proof is almost identical to the proof of Theorem 2, we omit it.25

However, with more than two players, the set of consistent equilibria can be heavily

affected by potential non-participation. The reason is that negotiation participants may not

23An extension of the analysis would be to consider the case in which only the participation decisions are
observable. Even if contracts are then secret to non-participants, they might still matter as the participants
would now seek to maximize their joint payoff.

24In the two-player case, a non-participation deviation by Player i implies that G is played unmodified.
If the expectation is that Player i′s worst equilibrium of G will be played in response to this deviation,
the deviation is thus unprofitable. With n > 2 players, if Player i chooses to exit from negotiations, the
remaining N−1 players are left to contract among themselves. Just as N−1 opponents can always credibly
keep player i’s payoff down to πi = ui(G) following a proposal deviation by player i in Γ(G) they can do
so now (indeed, they have extra flexibility, as the proposals are not yet made when the non-participation
deviation is observed); see the proof of Theorem 1.

25The most powerful consistent punishment threat is to play the worst (for the deviator) undominated
Nash equilibrium of G, and a non-participation deviation is no different in payoff terms from a no-signing
deviation.
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be able to credibly threaten to punish a non-participant. Once they know that a player is un-

able to participate in contracting, the participants may desire to punish the non-participant,

but by consistency they will not play a strategy profile that is payoff-dominated by any other

subgame-perfect equilibrium in the ensuing contracting subgame. And if all such consistent

strategy profiles are sufficiently beneficial for a set of non-participants, full participation

cannot be supported. Our next result formalizes this intuition by characterizing a class of

games G for which efficiency is unattainable due to free-riding.

In the characterization, an important number will is the lowest payoff that a single non-

participant i can obtain in a consistent equilibrium of the subgame that starts at Stage 1 (the

proposal stage). Denote by ∆XBRi player i’s set of best-responses in G. Choose a strategy

profile µ̃BRi ∈ ∆XBRi that maximizes the joint payoff to players 1, 2, ...i−1, i+1, ...n. That

is,

µ̃BRi = arg max
µ∈∆XBRi

∑
j 6=i

Uj(µ).

If there are multiple such strategies, choose the one that is the worst for player i. Denote

player i’s payoff at this strategy profile by

fi(G) = Ui(µ̃
BRi).

Theorem 6 Suppose n > 2. Moreover, for all players i suppose (i) x∗i 6∈ BRi(x
∗
−i) and (ii)

vi(G) = uudi (G). Then, ΓV (G) has an efficient consistent equilibrium if and only if∑
i∈N

Ui(x
∗) ≥

∑
i∈N

fi(G).

The proof is in the Appendix.

In these games there is a tension between efficiency and equilibrium (condition (i)), and

the worst equilibrium payoff is as bad as it gets, with each player obtaining her maximin

payoff (condition (ii)). The class includes many games of economic interest, especially public

goods provision games. Intuitively, the theorem rests on the following set of observations.

First, the non-participating player is bound to best-repond to the anticipated actions of

contracting coalition (these actions will typically be easy to predict from their contract).

Second, in this class of games, any consistent equilibrium in which only players j 6= i can

contract implies an allocation that cannot be Pareto-improved. Consequently, the worst

consistent punishment for player i′s non-participation is achieved exactly at µ̃BRi . Indeed,

were there another consistent equilibrium with worse non-participation punishment, consis-

tency would require a higher joint payoff to players j 6= i, which contradicts the definiton of

fi(G). Now, as x∗i 6∈ BRi(x
∗
−i), supporting it requires participation of all players. Ensuring

universal participation is thus possible if and only if x∗ provides sufficient resources for each

player i to overcome the incentive to unilaterally deviate, as given by fi(G).

One instance of G that has been studied in numerous experiments has four players, each
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with an endowment of M money units, individually choosing how much of the endowment

to contribute to a public good. Each contribution is multiplied by 1.6 and the resulting sum

is divided equally among all four players. That is, player i’s payoff is

1.6

∑
j cj

4
+M − ci.

Suppose the payers are selfish and risk neutral, so that money corresponds to utility. If

players could decide whether to participate or not, i.e., if they were playing ΓV (G) instead

of G, then Theorem 6 says that an efficient outcome cannot be supported as a consistent

equilibrium. To see this, note that (i) ΓV (G) is covered by Theorem 6 (each player’s unique

dominant strategy is to contribute nothing, and the unique equilibrium payoff profile of G

is (M ,M ,M ,M), which coincides with the maximin payoff for each player). Let us illustrate

the logic of the theorem: Player i′s best response is always to contribute nothing. Thus,

∆XBRi includes all strategy profiles in which player i contributes nothing. The payoff of

the remaining three players j 6= i is given by

∑
j 6=i

[
1.6

∑
j 6=i cj + 0

4
+M − cj

]
= 0.2

∑
j 6=i

cj + 3M,

and is maximized by full contribution of players j 6= i. The payoff of player i associated

with maximum credible punishment by collaborating opponents is thus

1.6
3M

4
+M − 0 = 2.2M.

The sum of unilateral free-rider payoff for all 4 players thus equals 8.8M, which exceeds the

total payoff at the efficient outcome is 6.4M . Hence, full cooperation is not sustainable in a

consistent equilibrium of the contracting game.

7 Promises as outside options

***This section is not edited**********

Jackson and Wilkie (2005) conjectured that agreements might admit efficient equilibrium

outcomes, but they also noted that the presence of unilateral promises could potentially

threaten that efficiency. A promise by Player i is a function T JWi : X → Rn−1
+ specifying

non-negative transfers from player i to each of the n − 1 opponents as a function of the

pure strategy profile x. Recall that Jackson and Wilkie (2005) studied the two-stage game,

denote it ΓJW (G), in which all players first simultaneously make promises T JWi and then

play G modified by these promises. Among other things, they showed that ΓJW (G) does

not always admit efficient equilibrium outcomes.

In this Section, we shall show that efficiency is often attainable despite the availability
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of unilateral promises. Indeed, there are even games G for which the possibility of making

promises helps to expand the set of efficient outcomes that could be sustained in an equi-

librium of Γ(G). The reason is that a promise can be used as a pure threat, forcing the

opponent down to her maximin outcome of G, which in some games is below her worst Nash

equilibrium payoff.

Before providing a formal analysis of promises, let us clarify the connection to promises

that are observed in practice. When a buyer unilaterally promises to pay an amount T in

return for some action taken by a potential seller, then this procurement contract may create

a legal obligation for the buyer to pay once the seller has taken the requested action. That

is, the buyer’s obligation can arise regardless of whether the seller first agrees to the buyer’s

promise or the seller only holds the buyer to the announced promise afterwards. These

promises represent a plausible extension of the agreements considered above. However,

Jackson and Wilkie (2005) also admit more exotic promises. As an illustration, consider the

game in Figure 1 again. The analogy to the procurement example is if rancher 1 promises

to pay rancher 2 a transfer in case rancher 2 takes action H instead of the privately more

desirable action L. But in addition to such ordinary “promises to exchange,” Jackson and

Wilkie allow purely “donative promises” according to which rancher 1 promises to pay a

transfer to rancher 2 in case rancher 1 takes action H. That is, rancher 1 may use rancher

2 as a sink, with the implicit purpose of making credible the statement that “I, rancher 1,

do not intend to play H”.26 It is these strategic donative promises that occupy center stage

in Jackson and Wilkie (2005) and that play a crucial role below.

7.1 Additional definitions

The key difference between promises and agreements is that agreements require joint consent

by all affected parties, while promises require unilateral consent only by promisors, i.e., the

players who make positive transfers. We shall assume that an agreement can, if the parties

so wish, invalidate any of their unilateral promises. If so, promises are executed if and only

if parties fail to reach an agreement.

Specifically, a contract proposal by Player i is now written (τi, Ti) = (t, T ), where τi

stands for the agreement clause of the proposed contract, and Ti for the promise clause,

to be described in the next paragraph. At the signature stage, the players affected by the

agreement clause, τi, make their signing decisions. If a proposed agreement τi is signed by

all affected players N t, t is binding and T becomes irrelevant. If τi is not signed by all

26It is not clear that contract law supports such a transfer. In legal parlance, rancher 1 here issues a
“gratuitous promise” which is ordinarily seen as a promise that “lacks consideration.” (Consideration is
defined as the price that the promisee pays in return for the promisor’s promised action. For a discussion
of consideration in the context of gratuitous promises, see for example Gordley, 1995.) Thus, if rancher 1
eventually were to play H, rancher 2 – who already benefits from rancher 2’s action – might not be able
to have the court enforce rancher 1’s promise. With the recent growth of firms that offer “legally binding”
commitment contracts, such as the company StickK, we may soon learn to what extent courts will uphold
purely donative promises issued for self-control purposes.

21



affected players, the promises T are in play.

We focus attention on promise clauses that are activated if some affected player does not

sign the proposed agreement. Hence, let M t denote the set of all possible proper subsets

of N t and let Tjk : X × M t → R+ denote a promised transfer from Player j to Player

k 6= j conditional on the set of signatures.27 Since Player j has n− 1 opponents, and their

consent is not required to enact a promise, Player j’s unilateral obligations according to

some promise clause can be written Tj : X ×M t → Rn−1
+ . A promise clause thus specifies

unilateral obligations T = {Tj}j∈Nt for each player affected by the agreement clause. Finally,

denote the set of players who signed the contract by St, where St ⊂ N t.

Let ΓR(G) be a contracting game with the same structure as before, but in which con-

tracts are allowed to be of the form (t, T ). Suppose finally that each player may sign at

most one contract. (Alternatively, we could reach identical conclusions by allowing players

to impose an entire-agreements clause in their contract proposals.)

7.2 Result

We want to demonstrate that that promise clauses can serve as threats, i.e., they can be

used to minimize reluctant signatories’ payoff. To see what that minimum is, suppose

hypothetically that all Player i’s opponents could commit to a pure strategy profile in case

Player i does not sign an agreement. Then they could potentially keep Player i down to her

pure strategy maximin payoff in G,

vpi (G) = max
xi

min
x−i

Ui(xi, x−i),

but no lower. (Since G is a finite game, vpi is well-defined.) Thus vpi (G) is the harshest threat

that Player i could ever face. As it turns out, such threats can be implemented through

promise contracts, and that possibility in turn defines the range of sustainable efficient

outcomes.

Theorem 7 Suppose n > 2. Then any strategy profile x̂ ∈ X and payoff profile π(x̂) ∈ Π(x̂)

that yields each player i a payoff weakly above vpi (G) can be sustained in a subgame-perfect

equilibrium of ΓR(G).

The main difference as compared to Γ(G) is that the outside option of Player j (in case

she unilaterally deviates by not signing the contract of Player i) is now affected by unilateral

transfer clauses rather than merely by the payoffs in G. The crucial step is to show that it

is still possible for Player i to make Player j sign the agreement despite Player j being able

to affect the disagreement payoff by making promises.

The proof of Theorem 7 rests on the following Lemma.

27If we would not allow the promises to differ depending on who signs the contract, the set of efficient
payoff profiles that can be sustained would shrink, but not be empty. Intuitively, promise clauses serve to
punish players who fail to sign an agreement. Promise clauses that do not target specifically the deviating
player constitute less powerful threats.
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Lemma 1 Suppose n > 2. Then, for any i there exists a profile of promise functions

T−i(x) =
(
T−i1 (x), ..., T−ii−1(x), T−ii+1(x), ..., T−in (x)

)
which bounds the payoff of Player i in

ΓJW (G) to vpi (G).

The lemma’s proof is similar to the proof of Proposition 4 of Jackson and Wilkie (2005)

and is relegated to the Appendix. In short, each of Player i’s opponents commits to choose

the strategy that supports the maximin of Player i in game G by making a large transfer to

all remaining players in case of any deviation from the intended maximin strategy profile.

Hence, it becomes too costly for Player i to pay any opponent to deviate.

Having established the existence of such promises, it remains to show how they can be

used as a credible threat in order to induce player i to sign an agreement. Specifically, let

each player i offer an identical contract (τi, Ti) = (t̂, T̂ ) covering all the players, where the

agreement clause specifies the following net transfers from each Player j,

t̂j(x) =


Uj(x)− πj(x) if x = x̂;

(n− 1)h if xj 6= x̂ and x−j = x̂−j;

−h if xj = x̂j and |{k : xk 6= x̂k}| = 1;

0 otherwise,

and the promise clause is

T̂j(x, S
t) =

{
T−m

j (x) if St = N t/ {m} ;

0 otherwise.

In case of agreement, this contract clearly entails the payoffs (π1(x̂), π2(x̂), ..., πN(x̂)).

The remainder of the proof proceeds along the lines of the proof of Theorem 1 to show

that everyone signing the contract proposed by Player 1 is indeed an equilibrium of ΓR(G).

For Stage 3, along the equilibrium path, the argument is identical. At Stage 2, no player

m would want to deviate from signing Player 1’s contract, as everyone else’s promises T−m

guarantee that vpi (G) is the highest payoff Player m can get, and vpi (G) ≤ πm(x̂). Similarly,

there is no way that Player m can improve her payoff at the contract proposal stage, as

vpi (G) is the highest payoff Player m can get by unilaterally altering the own promise clause.

Just as Theorem 1, Theorem 7 ensures the existence of efficient equilibria in the game

ΓR(G). However, while Theorem 7 covers many games, it does not cover two-player games.

Indeed, the method of proof does not generalize to this case; when n = 2, it is no longer true

that all maximin outcomes of G can be supported as equilibria of ΓR(G) (exactly like not all

equilibria of G remain equilibria of ΓJW (G), as shown by Jackson and Wilkie.) While we can

show that efficient outcomes are also sustainable in 2×2 games with at least one PSNE, such

as the game in Figure 1, we have neither a proof nor a counterexample for the entire class

of two-player games. We conjecture that the result generalizes, but must leave the question

open. The next subsection identifies additional features of the contracting technology that

are sufficient for sustaining efficient outcomes in all finite normal-form games.
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7.3 Conditioning promises on strategies

Let us now allow contracts to condition transfers on mixed strategies in G, that is on ∆,

rather than just on the realized profile of actions (pure strategies) X. Of course, this assump-

tion is strong, arguably unduly so.28 Furthermore, allow transfers to be non-deterministic

(when transfers are non-deterministic, they cannot straightforwardly be neutralized by an

offsetting transfer in the other direction). Formally, a non-deterministic contract specifies a

probability distribution over transfers, so let Ψ denote the set of all probability distributions

on the space of functions from ∆ into Rn−1, and Ψ+ denote the set of all probability distri-

butions on the space of functions from ∆ into Rn−1
+ . Then we can express Player i’s contract

proposal as a pair of functions (τEi , T Ei ) = (tE, TE), where the agreement clause tE ∈ Ψ, and

the promise clause specifies unilateral obligations TEj : M t → Ψ+ for all players j ∈ N t.29

Let ΓE(G) denote the full game with this extensive set of contracting opportunities.

Let

vi(G) = max
µi

min
µj

Ui(µi, µj)

be Player i’s mixed-strategy maximin payoff in G. Since G is a finite game, vi is well-defined.

Theorem 8 For any two-player game G, ΓE(G) has an efficient subgame-perfect equilib-

rium.

Let us here give the core of the proof, while relegating details to the Appendix when

noted.

As in the previous subsection, the outside option of Player 2 (in case she does not sign

the contract of Player 1) is now affected by unilateral transfer clauses rather than merely by

the payoffs in G. The crucial step is to show that, also in the case of two players, Player i can

choose her promise clause to put an upper bound on what Player j can achieve. Moreover,

this bound can be made so low that there is a division of the efficient surplus that both

players prefer.

It is convenient to start by analyzing the simpler game in which agreements cannot be

signed, that is, ΓJW (G) extended to allow conditioning on mixed strategies – call this game

ΓJW,E(G).

28While it is not unreasonable to assume that players have access to public randomization devices, and
may agree ex ante to condition transfers on the realization of such a device, it is an entirely different matter
to verify ex post which mixed strategy a player has been following. To allow a court to enforce the transfers
specified in such a contract, the following seems necessary. First, a randomizing player must, when playing
G, publicly announce the randomization device before taking any action. Second, and more controversially,
there must be a credible link between the device’s realization and the action. As there is no guarantee
that the prescribed action is ex post incentive compatible, the player must effectively have delegated the
(contingent) action execution. In a partial way, this brings into the model the undesirable feature that
contracts directly restrict actions, which is the feature of some other approaches to contracting that we least
like. (Note however that the choice of randomization device is still not directly controlled by the contract.)

29JW mention randomization over the set of transfers, but for technical reasons do not explicitly allow it
(JW, page 549).
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Lemma 2 For each d > 0 and i = 1, 2 there exists a bounded promise of player j 6= i,

Tj,d : ∆ → R+, never exceeding h (4h/d− 1), such that Player i’s payoff in ΓJW,E(G) is at

most vi(G) + d.

Proof. See Appendix.

The logic behind Lemma 2 runs roughly as follows. First, Player 1 cannot make a

unilateral promise such that Player 2’s resulting payoff is below v2(G). The reason is that

Player 2 can always choose not to promise any unilateral transfers, in which case the transfers

of Player 1 can only improve Player 2’s minimum payoff. Second, Player 2 can be held

sufficiently close to v2(G) by a promise T1,d (µ) that mixes between two sets of unilateral

promise transfers. The first promise, call it T 1,d (µ), marginally ensures the dominance of the

strategy µm1 which causes v2(G) under the provision that Player 2 does not offer a contract.

The second promise, call it T 1,d (µ), makes µm1 much more strongly dominant; it induces

Player 1 to play µm1 unless Player 2 offers some large transfer l in return for a different

strategy. Suppose Player 1 plays the first clause with a sufficiently small probability p(l).

Then, any clause that is part of a (mixed-strategy) best response of Player 2 yields a finite

payoff to Player 2. Moreover, the best response can either yield Player 2’s minimax in G

with high probability 1 − p(l) (if the best response transfer is too small to counteract the

dominance of µm1 produced by T 1,d (µ)), or yield a loss of an order of magnitude of l with

relatively small probability p(l). (In this latter case Player 2’s transfer should be sufficiently

large to counteract T 1,d (µ), which implies that Player 2 loses at least an extra l when playing

this transfer against T 1,d (µ) .) It turns out that l does not need to be very large to ensure

that Player 2’s payoff does not exceed v2(G) + d; in fact, l = 2h
(

2h
d
− 1
)

would already be

sufficiently high. Finally, notice that, by making µm1 just dominant, T 1,d (µ) clearly does not

exceed h, and thereby T 1,d (µ) does not exceed h+ l.

Given our previous analysis of Γ(G), it is now straightforward to formulate the equilib-

rium strategies of ΓE(G). For example, consider an efficient strategy profile x∗, pick

d =
U1(x∗) + U2(x∗)− (v1 + v2)

2
.

If d > 0, consider equal division of the efficient surplus:

π1(x∗) = v1 + d,

π2(x∗) = v2 + d.

Let us show that x∗ and the allocation (π1(x∗), π2(x∗)) can be supported by as an efficient

subgame-perfect equilibrium of ΓE(G).

At Stage 1, players i = 1, 2 offer the following “identical” contracts (τEi , T Ei ) = (tE∗, TE∗),

25



where the agreement clause is

tE∗j (x) =


Uj(x)− πj(x) if x = x∗;

h if xj 6= x∗j and x−j = x∗−j;

−h if xj = x∗j and x−j 6= x∗−j;

0 otherwise,

and the unilateral promise clause is

TE∗j (x, St∗) =

{
Tj,d if j signs the contract, while i does not;

0 otherwise.

That is, as in Theorem 7, each player uses the promise clause to impose an upper bound

on the payoff of a non-signing opponent; the only difference is that the promise clauses are

here non-deterministic.

Stages 2 and 3 are analogous to the proof of the best-reply properties in Theorem 7. Here,

by deviating at the proposal stage the players can manipulate the outcome of the branches

where one party fails to sign the contract by altering unilateral clauses. However, since any

deviation by Player i to a different promise cannot yield her more than vi + d = πi(x
∗), it

follows that neither player can profitably deviate by manipulating the promise.

We are left with the case of d = 0, that is, when the the sum of the maximin payoffs

is efficient. In this case all Nash equilibria of G are efficient, and with payoffs equal to the

players’ maximins. Such an equilibrium can be straightforwardly supported as a SPNE of

ΓE(G); let each player offer zero transfers both for the agreement clause and for the promise

clause. A unilateral deviation to positive transfers can now only improve the situation for

the opponent (who is always assured the maximin) at the expense of the deviating player

(for details, see the Appendix).

The only difference between the efficient equilibria of ΓE(G) and those of Γ(G) is that

we now depend on public randomization. The unilateral clauses Tj,d (µ) involve mixing, and

the mixing probabilities must be observable; otherwise, Player 1 would potentially choose a

different strategy (depending on whether the maximin strategy is a best reply or not).

Having demonstrated that the negotiation game ΓE(G) always has an efficient outcome,

let us finally show that the range of efficient outcomes is no smaller than for Γ(G) and

could be larger. In particular, any efficient outcome that yields each player more than the

maximin payoff may be sustained (whereas in Γ(G), with two players, each player must

obtain at least their smallest Nash equilibrium payoff).

Theorem 9 Any efficient outcome that yields each player i a payoff strictly above vi(G)

can be sustained in a subgame-perfect equilibrium of ΓE(G).

Lemma 2 already demonstrates that Player i can bring Player j′s payoff arbitrarily close

to vj (though it could require larger and larger transfers). Now, to sustain the efficient
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equilibrium x∗ with payoffs (π1(x∗), π2(x∗)), where πi(x
∗) > vi(G), choose

d = min
i=1,2

(πi(x
∗)− vi(G)) > 0, (1)

and let players i = 1, 2 offer “identical” contracts (τEi , T Ei ) = (tE∗, TE∗) with

tE∗j (x) =


Uj(x)− πj(x) if x = x∗;

h if xj 6= x∗j and x−j = x∗−j;

−h if xj = x∗j and x−j 6= x∗−j;

0 otherwise,

and

TE∗j (x, St∗) =

{
Tj,d if j signs the contract, while i does not;

0 otherwise,

where Tj,d (µ) is as set by Lemma 2 for d defined in (1). Since any Stage 1 deviation of

Player i cannot yield more than vi + d ≤ πi(x
∗), it follows that neither player can profitably

deviate by manipulating her/his promise. The rest of the proof is analogous to the proof of

Theorem 7. For the case of more than two players, the proof relies on the same construction

as the proof of Theorem 7, except allowing conditioning on mixes.

Since we can never have any equilibrium of ΓE(G) in which a player gets less than

the maximin payoff, Theorem 9 provides a complete characterization of attainable efficient

payoff profiles, with the exception of the measure zero set in which some player gets exactly

the maximin payoff.30

8 Conclusion

We have proposed and analyzed a non-cooperative model of contract negotiations. Our

findings reconcile two apparently conflicting intuitions. The first intuition is that costless

contracting ought to admit efficient outcomes if people are willing and able to negotiate.

The second intuition is that efficiency may be incompatible with voluntary participation in

contract negotiations.

If there are two players, as in all the examples of Coase (1960), only the first intuition

applies. Efficiency is attainable whether participation is voluntary or not.

With more than two players, it can be individually rational not to participate in nego-

tiations. Even in the best attainable equilibrium of the contract negotiation game, some

player will be catching a free ride on others’ agreements. These agreements in turn will fail

to implement efficient outcomes. That is, with more than two players neither participation

nor efficiency is ensured.

30As a curiosity, it can be shown that such extreme payoff profiles are attainable in a subgame-perfect
ε−equilibrium.
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Appendices

A Proof of Theorem 1

As mentioned in the main text, we need to establish existence of a system of feasible transfers

defined on the support of µ̂ such that each player gets exactly the payoff πj(µ̂) by playing

any strategy in the support of µ̂j given that the other players play µ̂−j. The definition of

the transfers outside the support of µ̂ and the rest of the proof are exactly similar to the

case of sustaining a pure strategy profile.

Consider any feasible profile of payoffs π(µ̂), such that πj(µ̂) ≥ uj(G). Denote by nj ≥ 1

the number of player j′s strategies in the support of µ̂j, and denote these strategies by x̂1
j ,

x̂2
j ,...., x̂

nj

j respectively. For any pure strategy profile x̂ = (x̂j, x̂−j) in the support of µ̂,

denote by µ−j(x̂−j) the probability players k 6= j are playing x̂−j. That is,

µ−j(x̂−j) =
∏
k 6=j

µk(x̂k)

Define a system of transfers tj (xj, x̂−j) on the support of µ̂ in the following way:

(A) For each player j and each x̂kj ∈ supp(µ̂j), k = 1, ..., nj, the expected payoff of player

j is exactly equal to πj(µ̂):∑
x̂−j∈supp(µ̂−j)

µ−j(x̂−j) ·
(
Uj(x̂

k
j , x̂−j)− tj

(
x̂kj , x̂−j

))
= πj(µ̂). (2)

These equations ensure that player j is indifferent between any of her strategies x̂kj as long as

the other players stick to playing µ̂−j. There are nj such equations for player j and
∑N

j=1 nj

such equations in total. For notational convenience, mark each of the equations entering

subsystem (2) by the strategy whose payoff it represents. For example, we would refer to

equation ∑
x̂−1∈supp(µ̂−1)

µ−1(x̂−1) ·
(
U1(x̂k1, x̂−1)− t1

(
x̂k1, x̂−1

))
= π1(µ̂)

as equation (2.x̂k1).

(B) The transfers are balanced for each pure-strategy profile x̂ in the support of mixed-

strategy profile µ̂. That is,
N∑
j=1

tj (x̂) = 0. (3)

There are ΠN
j=1nj such equations. As above, mark each of the equations entering subsystem

(2) by the strategy profile it corresponds to (e.g., (2.x̂)).

If the transfers of each player j = 1, ..., N solve system (2)-(3) on the support of µ̂, and
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are defined as follows outside the support of µ̂

t̂j(x) =


(n− 1)h if xj /∈ supp(µ̂j) and x−j ∈ supp(µ̂−j) ;

−h if xj ∈ supp(µ̂j) and |{k : x−j /∈ supp(µ̂−j)}| = 1;

0 otherwise,

then the rest of the proof is exactly the same as in case of sustaining a pure strategy.

Lemma 3 System (2)-(3) always has a solution.

Proof. We will show that the system (2)-(3) is indeterminate (i.e., that there are more

unknowns than equations) and consistent, and thus always has a solution.

There are
N∏
j=1

nj +
N∑
j=1

nj

linear equations in the system of equations (2)-(3), and N ·
∏

j nj unknown transfer values

tj (x̂j, x̂−j). However, the system (2)-(3) is not linearly independent. Indeed, the feasibility

of payoffs combined with the balanced transfer scheme (3) imply that the weighted sum

of equations (2) with weights equal to µj(x̂
k
j ) respectively, and taken across all players

j = 1, ..., N is equal to zero:

∑
j

 ∑
k=1,...,nj

µj(x̂
k
j )

∑
x̂−j∈supp(µ̂−j)

µ−j(x̂−j) ·
(
Uj(x̂

k
j , x̂−j)− tj

(
x̂kj , x̂−j

))
=

∑
j

 ∑
k=1,...,nj

∑
x̂−j∈supp(µ̂−j)

[
µj(x̂

k
j ) · µ−j(x̂−j)

] (
Uj(x̂

k
j , x̂−j)− tj

(
x̂kj , x̂−j

))
=

∑
j

 ∑
x̂∈supp(µ̂)

µ(x̂) · (Uj(x̂)− tj (x̂))


=

∑
j

πj(µ̂)−

 ∑
x̂∈supp(µ̂)

µ(x̂)
∑
j

tj (x̂)

 =
∑
j

πj(µ̂).

Thereby, let’s drop equation (2.x̂1
1) - the one corresponding to player 1 playing strategy

x̂1
1 - from consideration, and prove that the remaining system of equations has full rank of∏
j nj +

∑
j nj − 1. For each of the pure strategy profiles x̂ in the support of µ̂, consider

transfer of player 1, t1 (x̂). This transfers enter one (and only one) equation (3.x̂) from

subsystem (3). Moreover, for x̂ =
(
x̂k1, x̂−1

)
, k = 2, ..., n1, the respective transfer t1

(
x̂k1, x̂−1

)
also enters equation (2.x̂k1) of subsystem (2)∑

x̂−1∈supp(µ̂−1)

µ−1(x̂−1) ·
(
U1(x̂k1, x̂−1)− t1

(
x̂k1, x̂−1

))
= π1(µ̂).
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Notice that this is only true for k = 2, ..., n1, as we just dropped the equation (2.x̂1
1) from our

system. Using equations (3.
(
x̂k1, x̂−1

)
) for all possible x̂−1 to exclude unknown t1

(
x̂k1, x̂−1

)
from equation (2.x̂k1) will transform (2.x̂k1) into the following form

∑
x̂−1∈supp(µ̂−1)

µ−1(x̂−1) ·

(
U1(x̂k1, x̂−1) +

[∑
j>1

tj
(
x̂k1, x̂−1

)])
= π1(µ̂)

for k = 2, ..., n1. Rewrite the above as

∑
x̂−1∈supp(µ̂−1)

µ−1(x̂−1) ·

[∑
j>1

tj
(
x̂k1, x̂−1

)]
= π1(µ̂)− U1(x̂k1, µ̂−1).

and denote this transformed equation by (2.x̂k1)′. Notice that the new linear system of

equations obtained from the system (2)-(3) by replacing equations (2.x̂k1)′ by equations

(2.x̂k1) for k = 2, ..., n1 is equivalent to the the original system (2)-(3). At the same time, in

this new system the transfers t1 (x̂) of player 1 enter only the subsystem (3), one per each

equation. Thereby, the equations in this subsystem are linearly independent both across

themselves and with the rest of the system. In other words, subsystem (3) contributes∏
j nj to the system (2)-(3) rank. Also, in determining the rank of the (2)-(3) system, we

can continue with the analysis of its remaining part, the new version of subsystem (2) - the

version in which equations (2.x̂k1) are replaced by equations (2.x̂k1)′.

Consider the new version of subsystem (2). Notice that Player 2’s transfer t2
(
x̂1

1, x̂
k
2, ..., x̂

1
N

)
enters only the equation (2.x̂k2), k = 1, ..., n2 (they would also enter the transformed version

of equation (2.x̂1
1), but recall that it is dropped from the system). Thereby, equations (2.x̂k2),

k = 1, ..., n2 are linearly independent among themselves, and with the remaining equations

of the subsystem. They contribute n2 to the rank of the system. Similarly to above, we can

continue with the analysis of the rank of system’s remaining part - subsystem (2) in which

equations (2.x̂k1) are replaced by equations (2.x̂k1)′ for k = 2, ..., n1, and equations (2.x̂k2),

k = 1, ..., n2 are dropped.

Now look closely at equations (2.x̂k1)′, k = 2, ..., n1. Transfer t2
(
x̂2

1, x̂
k
2, ...

)
enters only

equation (2.x̂2
1)′, transfer t2

(
x̂3

1, x̂
k
2, ...

)
enters only equation (2.x̂3

1)′, etc. In other words,

these equations are also linearly independent across themselves and with the remaining

subsystem, and we can again continue with the analysis of the remaining part of the system

only.

Finally, consider any of the remaining
∑N

j=3 nj equations - e.g., equation corresponding to

the payoff of player j choosing strategy x̂kj , (2.x̂kj ) It contains a term tj
(
x̂1

1, x̂
1
2, ..., x̂

k
j , ..., x̂

1
N

)
t

that does not enter any of the remaining
∑N

j=3 nj − 1 equations. Thereby, the remaining

system is also linearly independent.
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In other words, we have shown that the rank of the considered system is equal to

N∏
j=1

nj + n2 + n1 − 1 +
N∑
j=3

nj =
N∏
j=1

nj +
N∑
j=1

nj − 1.

It remains to show that the number of variables exceeds the rank of the system, that is

N ·
N∏
j=1

nj ≥
N∏
j=1

nj +
N∑
j=1

nj − 1

for any nj ≥ 1 and N ≥ 2. Indeed

N ·
N∏
j=1

nj −

[
N∏
j=1

nj +
N∑
j=1

nj − 1

]
= (N − 1) ·

N∏
j=1

nj −
N∑
j=1

nj + 1

=
N∏
j=1

nj − (nN−1 + nN) + 1 +
N−2∑
j=1

(
N∏
k=1

nk − nj

)
≥ nN−1 · nN − (nN−1 + nN) + 1 = (nN−1 − 1) · (nN − 1) ≥ 0.

Thereby, our system (2)-(3) is indeterminate. It is clearly consistent, as the rank of its

augmented matrix is also equal to
∏N

j=1 nj +
∑N

j=1 nj−1. Thereby, it always has a solution.

B Proof of Theorem 6

Lemma 4 ”Punishment” strategy µ̃BRi = arg maxµ∈∆XBRi

∑
j 6=i Uj(µ) exists and belongs to

∆XBRi.

Proof. Consider some strategy µ0 in ∆XBRi . Such a strategy exists (e.g., any undominated

NE would be an example of such an strategy profile). If the joint payoff of players j 6= i at

this strategy profile µ0 cannot be exceeded by their joint payoff in any other strategy µ1 in

∆XBRi , then µ0 = arg maxµ∈∆XBRi

∑
j 6=i Uj(µ) = µ̃BRi and the result is proven.

If the above does not hold, then consider the subset Di(µ0) ∈ ∆X of all strategy profiles

that give higher joint payoff of players j 6= i than at strategy profile µ0. Consider the set

D ⊂ R of values of joint payoff of players j 6= i for the strategy profiles in Di(µ0). By

completeness axiom, there exists a supremum of this set

d = supD = sup
µ∈Di(µ0)

[Σj 6=iUj(µ)] ,

Let’s show that this supremum can be achieved at some strategy profile that also belongs

to Di(µ0), or, in other words, that the set of strategy profiles that maximize the joint payoff

of players j 6= i is non-empty.
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By definition of supremum, there exists a sequence {µn} ∈ Di(µ0) such that

d− 1/n < Σj 6=iUj(µn) ≤ d.

This sequence {µn} is bounded in metric space of all strategies R×iXi , since a (mixed)

strategy of any player k can be represented as a vector of weights in |Xk|- dimensional space

of pure strategies of player k, with weights between 0 and 1 (and all weights summing to

1). Thereby, it contains a converging subsequence {µnk
}, with the limit that we denote by

µ̂. Recall that the non-participating player i is always playing best response at ∆XBRi . As

the best response correspondence in G - a finite game with continuous payoffs - is upper

hemi-continous, player i′s limit strategy µ̂i belongs to her best response to µ̂−i in G. That

is, µ̂ also belongs to ∆XBRi . Further, by continuity of payoff functions, the vector of payoffs

of players converges to their payoff at µ̂

lim
k→∞

Σj 6=iUj(µnk
) = Σj 6=iUj(µ̂).

Now, if the set of strategy profiles that maximize the joint payoff of players j 6= i over

all profiles in ∆XBRi , is non a singleton, repeat the above argument to select a subset of it

that maximizes the payoff of player i.

Lemma 5 Payoff fi(G), constitutes the worst punishment for player i′s non-participation

that can be implemented by participating players j 6= i in a consistent equilibrium.

Proof. First, notice that the non-participating player i would choose to play a best response

to any action of the participating coalition. That is, a strategy profile in a ”punishing”

consistent equilibrium should belong to ∆XBRi .

Second, let’s show that the strategy profile µ̃BRi ∈ ∆XBRi that yields the highest joint

payoff to players 1, 2, ...i− 1, i+ 1, ...n, and if there are multiple such strategies, is the best

for player i

µ̃BRi = arg max
µ∈∆XBRi

∑
j 6=i

Uj(µ)

can indeed be supported in a consistent equilibrium. Consider the following equilibrium

construction (very similar to the one in Theorem 1):

Stage 1: Each player j 6= i makes the proposal τj = t that ensures allocation µ̃BRi along

the equilibrium path.

Stage 2. If τ1 = t, each player j 6= i signs τ1. If τ1 6= τ2 = t, each player signs τ2, etc.

If no player offers t, players’ signing decisions are done in a way that results in a Pareto-

undominated outcome. If there are several such outcomes, choose the one that is the best

for player 1. If there are several of those, choose the one that is best for Player 2, etc. As

each signing-stage subgame is finite, backward induction ensures existence of such signing

profile.
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Stage 3. (i) If some proposal τ j = t was signed by all players j 6= i , play µ̃BRi .

(ii) if τj = t is signed by all but Player k, play Player k’th worst Pareto-undominated

Nash equilibrium in the resulting game. (iii) In all other situations, play the worst Pareto-

undominated Nash equilibrium from the perspective of Player 1 (if there are multiple such

equilibria, play the worst of them from the perspective of Player 2, etc.).

Let us show that this is indeed an equilibrium, and that it has Pareto-efficient continu-

ations at each proper subgame. Start with Stage 3 and move forwards.

At Stage 3, if tS = t, µ̃BRi represents a Pareto-undominated Nash equilibrium of the

game. Indeed, notice that any undominated Nash equilibrium of G belongs to ∆XBRi . By

construction, the joint payoff of players j 6= i at µ̃BRi is at least as high as at any Pareto-

undominated Nash equilibrium. This means, that there is a split of this joint payoff such that

each player ji ∈ N ′ gets a payoff that weakly exceeds her payoff in her worst undominated

Nash equilibria, making unilateral deviation non-profitable. As player i plays best responses,

µ̃BRican be supported as a Nash equilibrium. Also, as µ̃BRiyields the highest joint payoff to

players j 6= i on ∆XBRi , it would be impossible to increase the payoff of any of the players

without lowering the payoff of at least one of the others and still being in ∆XBRi strategy

set. That is, µ̃BRi is undominated (conditional on player i′s non-participation). In all other

situations, the rule above prescribes an undominated Nash equilibrium, so no player has any

incentive to unilaterally deviate, and no Pareto improvement is possible.

At Stage 2, consider first the branch along which τ1 = t. Then, a unilateral deviation

by some Player k 6= 1, i (not to sign τ1) entails tS = ∅, and Player k’s worst Pareto-

undominated equilibrium of G being played at Stage 3, so the deviation is not profitable.

This takes care of deviations on the equilibrium path. Off the path, an analogous argument

applies along the branches τ1 6= τ2 = t′, etc. Notice that in these cases the equilibria have

Pareto-efficient continuations at each proper 3-stage subgame. Finally, along any other

off-equilibrium branch, by definition the signing decisions are in line with Pareto-efficient

equilibria that have Pareto-efficient continuation at each proper 3rd stage subgame.

At Stage 1, only Player 1′s deviations τj1 6= t affect the subsequent play. After such a

deviation, τ2 = t will be signed instead, entailing exactly the same outcome as if Player 1

does not deviate. Thus, this is not a profitable deviation, so our suggested strategy profile

is an equilibrium. In turn, there could be no another, Pareto-improving equilibrium in this

subgame of ΓV (G), as argued above.

Finally, it is sufficient to notice that there could not be a worse punishment in a consistent

equilibrium. Indeed, recall, that all ”punishment” equilibria should belong to ∆XBRi . Then,

a consistent ”punishment” equilibrium resulting in Player i′s payoff below

fi(G) = Ui(µ̃
BRi)

implies that players j 6= i should jointly get more than at µ̃BRi , which contradicts the
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definition of fi(G).

Now we are ready to prove Theorem 6.

Proof. (a) Assume that condition∑
i∈N

Ui(x
∗) ≥

∑
i∈N

fi(G) (4)

is met, and let’s demonstrate existence of an efficient renegotiation-proof equilibrium of

ΓV (G). Consider the following equilibrium of ΓV (G):

Participation stage: all players choose to participate.

Contract proposal stage: All players who decide to participate propose the same contract

tNP ; however, the specification of this contract will depend on the set of players who decides

to participate. Specifically, if the set of players who decide to participate is universal, then

all players propose a contract t that supports allocation x∗ and provides players j ∈ N ′ with

the following transfers at x∗

fi(G)− Uj(x∗) +
1

|N |

(∑
i∈N

Ui(x
∗)−

∑
i∈N

fi(G)

)
. (5)

If there exists a single non-participating player i , then players j 6= i choose the above-

mentioned contract that implements allocation µ̃BRi . If the non-participating set of players

includes two or more players, all participating players NP propose a consistent contract that

yields the allocation µNp with the highest joint payoff to the members of NP among all the

allocations in which players N/NP play best responses (which exists and can be supported

by the arguments very similar to the above lemmas). Finally, if only one player chooses to

participate, no contract is proposed.

Contract signing stage: Number all players belonging to NP as j1, j2,...,jNP . If τj1 = tNP

(as proposed above), each player j ∈ NP signs τj1. If τj1 6= τj2 = tNP , each player signs

τj2 , etc. In case of NP -player contract proposal deviation, players sign in a way that makes

their signing decisions Pareto-efficient equilibria which have Pareto-efficient continuation at

each proper subgame.

Implementation stage: If some proposal τ ji = tNP (as described above) was signed by

all players j ∈ NP , play the allocation suggested by this contract. If τji = tNP is not signed

by a single Player jk ∈ NP , play Player jk’th worst undominated Nash equilibrium in the

resulting game. In all other situations, play the worst undominated Nash equilibrium from

the perspective of Player j1 (if there are multiple such equilibria, play the worst of them from

the perspective of Player j2, etc.). If no more than one person has chosen to participate,

play this player worst undominated Nash equilibrium of G.

Let us show that this is indeed an efficient renegotiation-proof equilibrium (in partic-

ular, that it has Pareto-efficient continuations at each proper subgame). Start with the

implementation stage and move backwards.
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Implementation stage: If no more than one person has chosen to participate, an undom-

inated Nash equilibrium is chosen. Assume now that NP ≥ 2 players choose to participate.

If tS = tNP , the resulting allocation represents an undominated Nash equilibrium of the

game. Indeed, if NP includes N ′, the resulting allocation is x∗, and the allocation rule (5)

ensures that no unilateral deviation is profitable. As x∗ is efficient, it cannot be renegotiated

either. If N ′/NP 6= ∅, then the contract implements an allocation on NP−Pareto frontier,

and constitutes an non-renegotiable equilibrium of resulting game.

Contract signing stage: Consider first the branch along which τ = tNP . Then, a unilateral

deviation by some Player j2 6= j1, j2 ∈ NP (not to sign τ) entails tS = ∅, and Player

j2’s worst undominated equilibrium of G being played at Stage 3, so the deviation is not

profitable. Along any other off-equilibrium branch, by definition the signing decisions are

in line with Pareto-efficient equilibria that have Pareto-efficient continuation at each proper

3rd stage subgame, and, as above, they exist because each signing game is finite.

Contract proposal stage: Only Player j1 deviations τ1 6= tNP affect the subsequent play.

After such a deviation, τ2 = tNP will be signed instead, entailing exactly the same outcome

as if Player j1 does not deviate. Thus, this is not a profitable deviation, so our suggested

strategy profile is an equilibrium. In turn, there could be no another, Pareto-improving

equilibrium in each subgame of ΓV (G) where players j ∈ NP choose to participate.

Participation stage: No player from N may find it profitable to deviate and non-

participate, as it would decrease her payoff. Also, as x∗ is efficient, there is no Pareto

improving equilibrium in the entire game.

(b) Now assume that condition (4) does not hold. If a player k chooses to participate,

she needs to obtain at least fi(G) in resulting consistent equilibrium. Indeed, if she refuses

to take part, she cannot be punished more than by fi(G). So, condition (4) simply means

that no contract supporting x∗ can deliver sufficient payoff to all participating parties.

Appendix B: Proof ofÉ

C Proof of Lemma 1

Denote the strategy profile that yields player i’s pure strategy maximin in G by xi,m. Con-

sider the transfer functions of players j = 1, ..., i− 1, i+ 1, ..., n to players k 6= j

T−ijk (x) =

{
2h if xj 6= xi,mj ;

0 otherwise.

Assuming that Player i does not promise any transfers, T−ijk (x) ensure that xi,mj is a dominant

strategy for players j = 1, ..., i− 1, i + 1, ..., n. This, together with xi,m being the maximin

strategy profile for Player i, implies that xi,m is a Nash equilibrium of the resulting game,
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with the payoff to player i given by

UG
i (xi,m) = vpi (G) = max

xi
min
xj

UG
i (xi, xj).

The rest of the proof effectively repeats the proof of Theorem 4 in Jackson and Wilkie

(2005). Specifically, let us show that Player i cannot increase her payoff by offering some

transfer function T ′i (.) 6= 0. This can only be improving if it leads to play of something other

than xi,mj by some player j = 1, ..., i − 1, i + 1, ..., n (as xi,m is a maximin for Player i so i

cannot do better by unilaterally changing her action). First, consider the case where a pure

strategy Nash equilibrium x̂ is played at the action stage, where x̂j 6= xi,mj for some player

j 6= i. Let there be K ≥ 1 players j 6= i such that x̂j 6= xi,mj , and consider some such j.

Player j’s pay-off from the profile x̂ is

UG
j (x̂)− (n− 1)2h+ 2h(k − 1) + T ′ij(x̂).

By playing xi,mj instead she gets

UG
j (xi,mj , x̂−j) + 2h(k − 1) + T ′ij(x

i,m
j , x̂−j).

As x̂ is a Nash equilibrium,

T ′ij(x̂)− T ′ij(x
i,m
j , x̂−j) ≥ UG

j (xi,mj , x̂−j)− UG
j (x̂) + (n− 1)2h.

By the definition of h, and the fact that n ≥ 2, it follows that

T ′ij(x̂) > 3h+ T ′ij(x
i,m
j , x̂−j) ≥ 3h

for any j such that x̂j 6= xi,mj . So, by the definition of h and the fact that K ≥ 1, Player i’s

payoff in x̂ is at most

UG
i (x̂)− 3hK + 2hK ≤ UG

i (x̂)− h < UG
i (xi,m) = vpi (G).

Hence, such a deviation cannot be profitable. When x̂ is a mixed strategy equilibrium, the

result is proved by using a similar argument for each strategy in the support of x̂j.

C.1 Proof of Lemma 2

Let us prove this result for i = 1 and j = 2 (the reverse is proved in exactly the same

way). Denote by µm1 the strategy of Player 1 that ensures the maximin of Player 2 (if there

are several such strategies, pick one). Assume that Player 1 mixes between two unilateral
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transfer promises. (i) One transfer promise, T 1 (µ) , satisfies

T 1(µm1 , µ2) = 0, ∀ µ2 ∈ ∆ (X2) ;

T 1(µ1, µ2) = max(U1(µ1, µ2)− U1(µm1 , µ2) + δ, 0), ∀ µ1 6= µm1 , µ2 ∈ ∆ (X2) .

(where 0 < δ � 1). Here, if Player 2 proposes no contract, µm1 becomes the dominant

strategy for Player 1. (ii) The other promise, T 1 (µ) , satisfies

T 1(µm1 , µ2) = 0, ∀ µ2 ∈ ∆ (X2) ;

T 1(µ1, µ2) = T 1(µ1, µ2) + l, ∀ µ1 6= µm1 , µ2 ∈ ∆ (X2) .

That is, if Player 2 does not offer a contract, µm1 dominates all the other strategies available

to Player 1 by at least some (large) l > 0.

To characterize the highest payoff Player 2 can achieve by responding to mixtures on this

support, it is useful to first consider the payoffs from responding to T 1 and T 1 separately.

Lemma 6 If Player 1 has made the proposal T 1, an upper bound of the payoffs that Player

2 can achieve through any clause T2 (µ) is

V2 = max
µ2∈∆(X2)

([
max

µ1∈∆(X1)
U1(µ1, µ2) + U2(µ1, µ2)

]
− U1(µm1 , µ2)

)
.

Proof. The proof is by contradiction. Suppose that there is some proposal T2 such that

the game G̃(T 1, T2), has a (worst for Player 2) Nash Equilibrium (µ̃1, µ̃2) yielding a payoff

to Player 2

UG
2 (µ̃1, µ̃2) + T 1(µ̃1, µ̃2)− T2(µ̃1, µ̃2) > V2.

As Player 1 made no transfers for the strategy µm1 , Player 1 must get at least as much in

this equilibrium as she would get by playing µm1 in the original situation G; otherwise Player

1 would choose to deviate. That is,

UG
1 (µ̃1, µ̃2)− T 1(µ̃1, µ̃2) + T2(µ̃1, µ̃2) ≥ UG

1 (µm1 , µ̃2).

Summing up these two inequalities we get

UG
1 (µ̃1, µ̃2) + UG

2 (µ̃1, µ̃2) > UG
1 (µm1 , µ̃2) + V2,

or equivalently,

UG
1 (µ̃1, µ̃2) + UG

2 (µ̃1, µ̃2)− U1(µm1 , µ̃2) > V2,

which contradicts the definition of V2.

Lemma 7 If Player 1 has made the proposal T 1, an upper bound of the payoffs that Player

2 can achieve through any clause T2 (µ) is given by V2.
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Proof. Completely analogous to the previous argument.

Assume now that Player 1 mixes between T 1 and T 1 with probabilities

p =
V2 − v2

V2 − v2 + l
, 1− p =

l

V2 − v2 + l
.

It turns out that there is an upper bound to how much Player 2 can gain in playing against

this mix of T 1 and T 1.

Lemma 8 If Player 1 randomizes over T 1 and T 1 with respective probabilities p and 1− p,

Player 2 can not obtain an expected payoff above

v2 +
(V2 − v2)2

(V2 − v2 + l)
.

Proof. Consider any contract T ′2(µ). There are two cases, depending on whether Player 1

plays the strategy µm1 in Player 2’s worst Nash equilibrium of G̃(T 1, T
′
2).

First, assume that Player 1 plays µm1 in this equilibrium. Then the payoff of Player 2

cannot exceed U2(µm1 , µ
m
2 ) = v2 (as Player 1 makes no transfers conditional on her playing

µm1 ). In turn, Lemma 6 implies that the payoff of Player 2 in G̃(T 1, T
′
2) cannot exceed V2.

Therefore, the payoff of Player 2 from playing T ′2 does not exceed

pV2 + (1− p)v2,

or equivalently
(V2 − v2)V2

V2 − v2 + l
+

lv2

V2 − v2 + l
= v2 +

(V2 − v2)2

V2 − v2 + l
.

Now assume that Player 1 plays a (possibly mixed) strategy µ̃1 6= µm1 in the equilibrium of

G̃(T 1, T
′
2) (and Player 2 plays some µ̃2). Then by Lemma 7 the payoff of Player 2 in this

equilibrium cannot exceed V2. Further, the strategy profile (µ̃1, µ̃2) is also an equilibrium in

the situation G̃(T 1, T
′
2). Indeed, for each strategy profile µ not involving µm1 , the contracts

T 1 (µ) and T 1 (µ) differ by l (by definition of T 1and T 1). This implies that Player 2’s payoff

in G̃(T 1, T
′
2) exceeds that in G̃(T 1, T

′
2) by exactly l, and Player 1’s payoff in G̃(T 1, T

′
2) is below

that in G̃(T 1, T
′
2) by the same l. Since Players 1 and 2 do not have a profitable deviation

from (µ̃1, µ̃2) in G̃(T 1, T
′
2), they cannot have one in G̃(T 1, T

′
2) either. This argument implies

that the payoff of Player 2 associated with the equilibrium (µ̃1, µ̃2) of G̃(T 1, T
′
2) is at most

V2 − l.

Therefore, the payoff of Player 2 from promising T ′2(µ) does not exceed

p (V2 − l) + (1− p)V2,
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which can be rewritten as

(V2 − v2)

V2 − v2 + l
(V2 − l) +

l

V2 − v2 + l
V2 = v2 +

(V2 − v2)2

V2 − v2 + l
.

Now, it is enough notice that for any d > 0 one can choose

l(d) = max

[
0, (V2 − v2)

(
(V2 − v2)

d
− 1

)]
.

Denoting by T1,d (µ) the mix of T 1 and T 1 with respective probabilities p and 1 − p corre-

sponding to l(d) (the transfer functions are denoted T 1,d and T 1,d respectively) completes

the proof, except for the transfer bound.

To establish the upper bound on transfers, observe that

max
µ

(
T 1,d(µ), T 1,d(µ)

)
= max

µ

(
T 1,d(µ)

)
+ l(d)) < 1+max

µ′,µ′′
(U1(µ′)−U1(µ′′))+ l(d) ≤ h+ l(d).

Evaluate l(d):

l(d) ≤ (V2 − v2)

(
(V2 − v2)

d
− 1

)
.

Notice that

V2 − v2 = max
µ2∈∆(X2)

([
max

µ1∈∆(X1)
U1(µ1, µ2) + U2(µ1, µ2)

]
− U1(µm1 , µ2)

)
− v2 < 2h.

As a result,

l(d) ≤ 2h

(
2h

d
− 1

)
and

max
i,µ

(
T i,d(µ), T i,d(µ)

)
< h+ l(d) ≤ h

(
4
h

d
− 1

)
.

C.2 Proof of Theorem 8, case d = 0

If d = 0, U1(x∗)+U2(x∗) = (v1 + v2). Since vi ≤ ui, all Nash equilibria of G are thus efficient,

with payoffs Ui(x
∗) = vi. We seek to prove that each equilibrium x∗ can be supported.

A degenerate version of our previous proofs applies in this case. Consider the following

strategy profile: At the proposal stage (Stage 1), both players offer the “null” contract with

zero transfers in all cells of G both for the agreement clause and for the promise clause.

At the signing stage (Stage 2), no contract is signed by either player (so that the null

promises are enacted). At the action stage (Stage 3), if the contract proposals and the

signing behavior were as above, x∗ is played in the resulting game G. If only one of the

players deviated at any of the previous stages, the “worst” equilibrium (which is here of

course no worse than any other equilibrium) for this player is played in the resulting game.
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Otherwise any equilibrium is played (again, this choice is irrelevant).

Let us check that the strategy profile forms an efficient SPNE of ΓE(G): There is no

profitable deviation at Stage 2 for any of the players, as the opponent is expected not to

sign any contracts. Similarly, at Stage 1, a deviation of Player i to another agreement clause

does not change the outcome (as players are expected not to sign any contracts at Stage

2). The only remaining deviation is to another promise clause. However, any promise of

a positive payment from Player i could only increase the (ultimate) payoff of Player j, as

Player j is already assured the maximin payoff vj. Since (v1 + v2) is efficient, this increase

would necessarily be at the expense of Player i.
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