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Abstract

We propose nonparametric definitions of absolute and comparative naiveté for

dynamically inconsistent preferences. These definitions leverage ex-ante choice

of menu to identify predictions of future behavior and ex-post choice from menus

to identify actual behavior. Naifs prefer the flexibility of a menu to committing

to their eventual choices, mistakenly anticipating more virtuous behavior. More

naive individuals are more optimistic about their future behavior and demand

more flexibility, yet are less virtuous in their actual choices. For Strotzian pref-

erences, our definitions impose linear restrictions relating anticipated and actual

temptation utilities to the virtuous utility, and yield further intuitive parametric

restrictions in particular specifications such as quasi-hyperbolic discounting. We

provide suitable definitions for random choice. Finally, we apply our definitions

to understand the welfare implications of commitment devices.
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1 Introduction

Models of dynamic inconsistency play an important role in a wide-ranging set of appli-

cations in economics. Of particular recent interest are the implications of naiveté when

individuals mispredict their future behavior.1 While naiveté often yields surprising

and significant consequences, its effects are usually understood within the context of a

specific utility representation of behavior. For example, O’Donoghue and Rabin (2001)

generalize the standard (β, δ) model of sophisticated quasi-hyperbolic discounting by

adding an additional present-bias parameter β̂ ≥ β to capture the individual’s possibly

naive belief about her future present-bias. The resulting (β, β̂, δ) model suggests natu-

ral comparisons of naiveté through its parameters, such as larger values of β̂ intuitively

corresponding to more naive individuals.

This parametric evaluation of naiveté relies on a particular utility function. In this

paper, we provide general nonparametric definitions of naiveté and sophistication that

are divorced from functional form assumptions. Our definitions are worded directly

on choice primitives, and not on the components of a utility function. To understand

the usefulness of our contribution, as an analogy consider the definition of risk aver-

sion as having a concave utility index for wealth v′′ < 0. This definition makes sense

only under the expected-utility hypothesis, as otherwise the invoked v does not exist.

But the notion of risk aversion seems more fundamental, since many people might not

maximize expected utility but still consider themselves risk-averse. A more basic and

satisfying criterion for risk aversion is an individual’s preference for certainly receiving

the expected value of a monetary lottery rather than exposing herself to its uncertainty.

This definition is workable without assuming any utility representation and can be di-

rectly tested without estimating the parameters of a structured model. Understanding

naiveté through the parameter β̂ of the quasi-hyperbolic discounting model has similar

limitations relative to a definition of naiveté phrased on choices. Our paper takes steps

to overcome these limitations.

Beyond improved theoretical foundations, model-free definitions of naiveté provide

relevant substantive benefits. They permit an examination of which positive predictions

in applications rely on functional-form assumptions and which predictions are inherent

features of naiveté. For example, a more risk-accepting investor will always choose a

risky equity position over a risk-free bond whenever a more risk-averse investor does.

1A recent survey of empirical applications can be found in Section 2.1 of DellaVigna (2009) and a
survey of some theoretical applications in contract theory can be found in Koszegi (2014).
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Similarly, we can ask whether predictions regarding savings or procrastination are

artifacts of an assumed utility or are robust implications of naiveté. In turn, a deeper

understanding of the mechanics of naive choice also improves normative analysis. In

particular, effective design of commitment devices can hinge crucially on the assumed

level of sophistication. Duflo, Kremer, and Robinson (2011) examine a theoretical

model where the optimal timing of when to offer a commitment depends on whether

individuals are sophisticated or naive regarding the degree of their present bias, and

provide evidence from Kenyan fertilizer adoption that individuals are naive and would

benefit from earlier and time-limited commitments. More general definitions of naiveté

provide a language broad enough to understand the consequence of policy interventions

when citizens have qualitatively different forms of naiveté and are best approximated

by a variety of formal models, and which policies work for which assumed models.

We propose definitions both for testing the naiveté of a single agent and for com-

paring levels of naiveté across agents. We leverage two pieces of choice data. First,

we use preference for commitment to measure anticipated behavior from an ex-ante

perspective before the realization of temptation. Formally, the individual’s preferences

over different menus captures her demand for commitment and allows an inference of

her beliefs regarding her future behavior. Second, fixing a level of commitment, we

use choices from availabilities to measure actual behavior from an ex-post perspective

under the influence of temptation.

To test naiveté and sophistication, our definition compares the agent’s predicted

value for a set x of different options against her actual ex-post choice C(x) from that

menu x. An individual is sophisticated if she is indifferent between maintaining the

flexibility to choose from x later or committing to her eventual choice C(x) now, i.e., if

x ∼ {C(x)} from her ex-ante perspective. If she is naive, she believes that she will make

a more virtuous choice, so prefers to maintain the flexibility in x, i.e., if x % {C(x)}.
For example, a naive gym member believes she will work out more than she actually

will, and mistakenly pays for a membership that provides the flexibility to visit the

gym numerous times.

To compare naiveté across agents, our definition again evaluates ex-post and ex-

ante behavior. Comparative naiveté has two components. First, the more naive agent,

say individual 1, is more optimistic about her future virtue than the more sophisti-

cated agent, say individual 2. This is measured by comparing her relative demand

for commitment: the naive agent’s optimism means she is less willing to commit to
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single options now, while the more sophisticated (and less optimistic) agent is more

eager to make commitments to avoid future temptation. Formally, {p} �2 x whenever

{p} �1 x, where {p} is a commitment to consume p in the future. Second, the more

naive agent is actually less virtuous. This is measured by her choice from x. Formally,

{p} �1 {C1(x)} whenever {p} �2 {C2(x)}. A more naive gym member believes she will

work out more often, but actually works out less, than the more sophisticated gym

member.

The proposed definitions characterize sharp and intuitive functional inequalities in

a variety of special models. Consider the Strotzian model of dynamic inconsistency,

where ex-ante normative behavior is dictated by one utility function u while ex-post

behavior under temptation is dictated by another utility function v. To allow for

naiveté, the individual believes that v̂, possibly different than v, governs her future

behavior. Our definition of absolute naiveté implies that the believed v̂ is a linear

combination of the virtuous utility u and the actual temptation utility v. Our definition

of comparative naiveté implies that more naive individuals have anticipated temptation

utilities that put more weight on u, but actual temptation utilities that put less weight

on u. For more structured specifications of the Strotz utilities, the definitions continue

to yield interpretable restrictions. In the case of consumption over time dictated by

the (β, β̂, δ) model of O’Donoghue and Rabin (2001), our definition of absolute naiveté

implies that β̂ ≥ β and our definition of comparative naiveté implies that if individual 1

with parameters (β1, β̂2, δ1) is more naive than individual 2 with parameters (β1, β̂2, δ2),

then δ1 = δ2 and β̂1 ≥ β̂2 ≥ β2 ≥ β1.

We present suitable generalizations of these definitions for the case of random choice

under uncertain temptations. The only required variation from the deterministic case

is that the determinate choice from a menu is replaced with the average choice under

a random choice rule. The random Strotz model of Dekel and Lipman (2012) allows

for future temptation to be stochastically realized from a set of multiple temptations.

For example, an individual on a diet might be tempted to eat salty snacks or might

be tempted to eat sweet desserts. For this model, the random analogs of naiveté and

sophistication yield suitable generalized implications: the more naive individual’s prob-

ability over her future temptations is more optimistic, in the sense that it puts more

likelihood on less intense temptations. Note that allowing for randomization is impor-

tant, even if actual ex-post choice is deterministic, as long as individuals are uncertain

about their future behavior. The generalization to random choice has substantive
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significance, as models of naiveté with uncertainty are common in applications. For

example, the predictions in Duflo, Kremer, and Robinson (2011) depend on farmers

being uncertain, as well as naive, of their future present-bias.

Our use of ex-ante and ex-post behavior has several precedents. In fact, empiri-

cal studies of naiveté also invoke ex-ante and ex-post observations. Purchases of gym

memberships in DellaVigna and Malmendier (2006) are taken to occur ex ante and

before the experience of temptation, while the visits to the gym are taken to occur

ex post when facing the temptation to shirk from exercise. Shui and Ausubel (2004)

observe consumers’ choices of credit card contracts (assumed ex ante) and their sub-

sequent borrowing behavior (assumed ex post). In perhaps the closest existing match

to our primitives, Augenblick, Niederle, and Sprenger (2013) report an experiment

where subjects can choose to commit to levels of work effort ex ante and then exert

actual effort ex post. These two-tiered observations allow structural estimation of the

parameters within specific models of naive choice. With our proposed definitions, the

hypothesis that one person is naive or is more naive than another can be rejected from

a few choice observations without the need for calibrated parameters.2

There are also papers in decision theory that use behavior at different time pe-

riods to capture sophistication. Lipman and Pesendorfer (2013) provide a survey of

these papers. Noor (2011) considers preferences over a recursive domain that includes

ex-ante and ex-post choice preferences as projections and pioneered the approach of

using temporal choice as a domain for explicitly testing the sophistication implicitly

assumed in most ex-ante axiomatic models of temptation. Kopylov (2012) relaxes

Noor’s sophistication condition and considers agents who choose flexibility ex ante

that is subsequently unused ex post. Kopylov exchews mistaken or naive beliefs, but

rather interprets the relaxation of sophistication as reflecting a direct psychic benefit of

maintaining positive self-image. These papers are discussed more specifically after we

introduce our definitions. Finally, Dekel and Lipman (2012) observe that ex-ante and

ex-post choice can be combined to empirically distinguish random Strotz representa-

tions from others that involve costly self-control. Much of the technical apparatus from

Dekel and Lipman (2012) ends up being useful in studying naiveté, as we will explain

in the body of the paper. Finally, a recent independent paper by Le Yaouanq (2015),

conceived and executed without awareness of our work, studies similar primitives but

proposes a different definition of naiveté, with a more explicit eye towards experimental

2A recent experiment by Augenblick and Rabin (2015) incentivized direct reports of subjects’
predictions of future behavior.
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data collection.

The next section introduces our formal primitives. Section 3 considers the spe-

cialized case of deterministic choice and introduces appropriate definitions of naiveté

and sophistication. Their implications are characterized for the Strotz model of dy-

namic inconsistency. As specific applications, we consider the Strotzian versions of

quasi-hyperbolic discounting and of more general diminishing impatience. Section 4

considers the case of random choice and characterizes the implications of naiveté for

the random Strotz model of Dekel and Lipman (2012). There, we consider as appli-

cations the model of Eliaz and Spiegler (2006) and the quasi-hyperbolic discounting

model with uncertain present bias. Section 5 examines a model where the individual

is offered a selection of commitment devices, and the consequent welfare implications

of naiveté.

2 Primitives

We study a two-stage model with an agent who initially decides a menu of several

options, and subsequently selects a particular option from that menu.

Let C denote a compact and metrizable space of outcomes. Let ∆(C) denote the

set of lotteries (countably-additive Borel probability measures) over C, with typical

elements p, q, . . . ∈ ∆(C). When it causes no confusion, we will slightly abuse notation

and write c in place of the degenerate lottery δc ∈ ∆(C). Finally, let K(∆(C)) denote

the family of nonempty compact subsets of ∆(C) with typical elements x, y, . . . ∈
K(∆(C)). So K(∆(C)) is a family of menus of lotteries. An expected-utility function is

a continuous function u : ∆(C)→ R such that u(αp+ (1−α)q) = αu(p) + (1−α)u(q)

for all lotteries p, q. A function is nontrivial if it is not constant. We write u ≈ v when

u and v are expected-utility functions and u is a positive affine transformation of v.

For fixed expected-utility function u and menu x, let Bu(x) ≡ argmaxp∈x u(p).

We consider a pair of behavioral primitives. The first primitive is a preference

relation % on K(∆(C)), with indifference ∼ and strict preference � defined in the

standard manner. The behavior encoded in % is taken before the direct experience

of temptation but while (possibly incorrectly) anticipating its future occurrence. The

second primitive is a random choice rule λ : K(∆(C))→ ∆(∆((C)) such that λx(x) = 1,

where ∆(∆(C)) denotes the space of lotteries over ∆(C). The behavior encoded in λ

is taken while experiencing temptation. For each x ∈ K(∆(C)), λx is a probability
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measure over lotteries, with λx(y) denoting the probability of choosing a lottery in the

set y ⊂ x when the choice set is the menu x. We refer to the first stage of choice of a

menu as occurring “ex ante” and the second stage of choice from a menu as occurring

“ex post,” that is, before and after the realization of temptation. For example, the

purchased gym contracts in DellaVigna and Malmendier (2006) correspond to an ex-

ante choice of a menu while the observed number of gym visits corresponds to an

ex-post choice from that menu.

At points, we will specialize to choice functions without randomization for their

substantive importance and expositional clarity. A random choice function λ is de-

terministic if λx is degenerate for all menus x, that is, λx = δp where δp is the Dirac

measure supported on p. Identifying the Dirac measure δp with p itself, we can notate

λ as a standard choice function C : K(∆(C)) → ∆(C).3 In that case, C(x) = p for

δp = λx.

These primitives echo prior work by Ahn and Sarver (2013) on unforeseen con-

tingencies. That paper inferred unawareness of future taste contingencies by compar-

ing choices before and after the realization of those contingencies. Observing ex-ante

demand for flexibility and ex-post exercise of flexibility can reveal unawareness and

provide positive foundations for the measurement of an unforeseen contingency, while

the standard approach of using only ex-ante preferences cannot. Similarly, here we

use demand for commitment in the first stage and then indulgence of temptation in

the second stage to infer naiveté. Under-demand for flexibility reveals unawareness of

future taste contingencies, while under-demand for commitment reveals naiveté about

future temptations.

3 Deterministic choice

We begin with the relatively more straightforward case of choice without randomiza-

tion before proceeding to the general case with random choices in the next section.

Throughout this section we assume a deterministic choice function C. We begin by

proposing definitions of sophistication and naiveté for a single individual.

3Recall the final outcomes are themselves lotteries. The determinacy here is in the sense that the
decision maker does not randomize her selection among these lotteries.
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Definition 1. An individual is sophisticated if, for all menus x,

x ∼ {C(x)}.

An individual is naive if, for all menus x,

x % {C(x)}.

We will say the individual is strictly naive if she is naive and unsophisticated.

A sophisticated individual correctly anticipates her choice C(x) from x. A naive

individual erroneously values the option to make more virtuous choices, envisioning

her virtuous selections. Inferring sophistication from x ∼ {C(x)} assumes that the

individual evaluates menus in a consequentialist manner, that is, the individual is

indifferent between committing to her (correctly) anticipated choice C(x) from x at

the ex-ante stage or selecting the menu x with the belief that she will choose C(x) ex

post. Put differently, adding an option to a menu is important only if the individual

anticipates choosing that option. This assumption is violated if unchosen options from

a menu affect well-being. For example, an individual who exerts costly willpower to

avoid choosing tempting options as in Gul and Pesendorfer (2001) does not evaluate a

menu only by its choice consequences. In this case, she may strictly prefer to remove

these unchosen temptations.4

In principle, an opposite violation of sophistication where {C(x)} � x and indi-

viduals over-estimate their future self-control problems is also possible.5 Many of the

following results have analogous statements for this case, and Appendix C records some

of those analogs. This case receives less attention and seems less empirically relevant,

so we restrict attention in the main paper to traditional naiveté.

We now compare naiveté across individuals. This comparison invokes two con-

ceptually distinct parts. The first considers individuals’ ex-ante views of their future

behavior. In environments with temptation, an ex-ante desire for commitment is often

interpreted as a signal of anticipated temptation. The following comparison of desire

for commitment is a slight variation of the comparison introduced by Dekel and Lipman

4In a companion paper, we explore alternative definitions of sophistication and naiveté that can
be applied to individuals who anticipate exerting costly self-control to resist tempting options.

5Ali (2011) shows that such a pessimistic belief can arise and persist in a model of Bayesian
experimentation.
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(2012).6

Definition 2. Individual 2 is more temptation averse than individual 1 if, for all

menus x and lotteries p,

{p} �1 x =⇒ {p} �2 x.

This definition compares individuals’ ex-ante demand for commitment to singletons,

with more temptation averse individuals exhibiting higher demand for commitment.

That is, if a less temptation averse person strictly prefers to commit to consuming the

lottery {p}, then the more temptation averse person also prefers to commit to {p}. The

more temptation averse individual therefore anticipates a higher value for commitment,

while the less temptation averse individual has a more optimistic view of her future

behavior. Note that comparability of temptation aversion guarantees that both agents

share common preferences over singleton menus, so their virtuous tastes are identical.

The second component of the comparison considers ex-post behavior after the real-

ization of temptation. The following comparison concerns individuals’ ex-post choices

from menus.

Definition 3. Individual 2 is more virtuous than individual 1 if, for all menus x and

lotteries p,

{p} �2 {C2(x)} =⇒ {p} �1 {C1(x)}.

The more virtuous individual makes better choices from all menus: if the less vir-

tuous agent makes choices from the menu x that are normatively superior to p, as

reflected in her ex-ante commitment preference, then the more virtuous agent also

makes normatively superior choices from x. Also note that Definition 3 implies both

individuals share common preferences over singleton commitments, that is, their vir-

tuous preferences are identical.

Absolute naiveté for a single individual involves both the ex-ante and ex-post per-

spectives, since a naive individual’s ex-ante belief diverges from her ex-post behavior.

Correspondingly, comparisons of naiveté across different individuals involves both per-

spectives as expressed in the prior two definitions: a more naive individual is more

optimistic about her future behavior ex ante (that is, she is less temptation averse) yet

less disciplined in her actual behavior ex post (that is, she is less virtuous).

6The formal definition also appears with different interpretations in Ahn (2007) and Sarver (2008).
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Definition 4. Suppose individuals 1 and 2 are naive. Individual 1 is more naive than

individual 2 if individual 2 is more temptation averse and more virtuous than individual

1.

The ubiquitous Strotz model of dynamic inconsistency offers a general application

for these concepts. A sophisticated Strotz individual is specified by two preferences.

The first is her ex-ante commitment preference over future consumption, as represented

by the utility function u. The second is her temptation preference that governs her

actual consumption choices at the ex-post stage, as represented by the utility function v.

Naivete requires divergence between believed and actual consumption. Specification of

a naive Strotzian consumer therefore requires a third preference to capture her possibly

erroneous beliefs about her future behavior, as represented by the utility function v̂.

Definition 5. A Strotz representation of % is a pair (u, v̂) of nontrivial expected-utility

functions such that the function U : K(∆(C))→ R defined by

U(x) = max
p∈Bv̂(x)

u(p)

is a utility representation of %.7

While she anticipates she will maximize v̂, a naive Strotzian agent’s ex-post behavior

C actually maximizes v.

Definition 6. A Strotz representation of C is a pair (u, v) of nontrivial expected-utility

functions such that

C(x) ∈ Bu(Bv(x)).

For convenience, we will often combine these two representations and refer to the

unified representation for both ex-ante and ex-post choice.

Definition 7. A Strotz representation of (%, C) is a triple (u, v, v̂) such that (u, v̂) is

a Strotz representation of % and (u, v) is a Strotz representation of C.

The following results demonstrate that the basic definition of naiveté characterizes

sharp parametric restrictions on v̂ and v. A naive individual believes that her future

behavior will be more virtuous than it actually is. Converting this intuition to the

parameters of the Strotz model, this means that the anticipated utility v̂ is more

7Recall Bv̂(x) was defined as argmaxq∈x v̂(q).
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aligned with the commitment utility u than the actual utility v that will govern future

consumption. The structure of the alignment is particular: v̂ is a linear combination

of u and v, that is, v̂ = αu+ (1− α)v. The belief v̂ puts additional unjustified weight

on the normative utility u, but aggregates u with v in a linear manner. This excludes

the case where the believed temptation is orthogonal to the actual temptation; for

example, this excludes the case where the individual will be tempted to indulge in

sweet treats but believes she will be tempted to indulge in salty treats. This structure

also relies crucially on the linear structure of the domain of lotteries and the assumed

expected-utility functions.

A natural parameterization of comparative naiveté evaluates agents’ weights on the

normative utility u and the temptation utility v.

Definition 8. Let u, v, v′ be expected-utility functions. Then v is more u-aligned than

v′, written as v �u v
′, if either v ≈ αu+ (1− α)v′ for some α ∈ [0, 1] or v′ ≈ −u.

An expected-utility function v is more u-aligned than v′ if it puts additional weight

on u that is not included in v′. It is also more u-aligned than v′ if v′ is maximally

misaligned with u, that is, if v′ is exactly −u.8

Theorem 1. Suppose (%, C) has a Strotz representation (u, v, v̂). Then the individual

is naive if and only if v̂ �u v (and is sophisticated if and only if v̂ ≈ v).

As mentioned, naiveté corresponds with unwarranted linear alignment of the be-

lieved utility v̂ with the virtuous utility u. The individual believes her future choices

will maximize a convex combination of her actual utility v and her virtuous utility u.

Note that the linear structure is a consequence of the definition of naiveté, and is not

assumed a priori.

Then comparative naiveté imposes linear restrictions across the agents’ ex-ante

predictions as captured by v̂1, v̂2 and ex-post behaviors as captured by v1, v2.

Theorem 2. Suppose (%1, C1) and (%2, C2) have Strotz representations (u1, v1, v̂1) and

(u2, v2, v̂2). Then individual 1 is more naive than individual 2 if and only if u1 ≈ u2 ≡ u

and

v̂1 �u v̂2 �u v2 �u v1.

8The special exception for this boundary case is to avoid tedious exceptions in the following char-
acterization theorems.
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While they share common normative preferences over singleton commitments, in-

dividual 1 is more optimistic about her future behavior than individual 2. This is

reflected in the requirement v̂1 �u v̂2. However, individual 1’s actual ex-post choices

are even less virtuous than person 2’s choices, as reflected in the requirement v1 �u v2.

So to be more naive, an individual must simultaneously be more optimistic about her

future virtuous behavior while actually exercising less virtue. As illustrated in Figure

1, comparative naiveté implies that all of the believed and actual temptation utilities

are convex combinations of the shared commitment utility u and the more naive indi-

vidual’s actual temptation v1. As in the case of absolute naiveté, the linear relationship

between the parameters is a consequence of the definition of comparative naiveté.

u

v̂1

v̂2

v2

v1

Figure 1: Alignment of believed and actual utilities implied by comparative
naiveté

Noor (2011) introduces the following definition of sophistication: if x ∪ {p} � x,

then C({p, q}) = p for all q ∈ x.9 While Noor’s definition is generally distinct from

Definition 1, the two definitions are equivalent in the Strotzian case. Noor (2011) is

interested in providing foundations for pure sophistication, so does not explore naiveté

or comparative statics. Kopylov (2012) proposes the following relaxation of Noor’s

sophistication axiom: if x ∪ {p} � x, then C({p, q}) = p for all q ∈ x or {p} � {q} for

all q ∈ x. That is, even if p is not chosen over other elements ex post, p may still add

value to the menu x because it is a more virtuous option. Kopylov’s interpretation is

not in terms of mistaken predictions about future behavior, but rather in terms of the

9This is an equivalent formulation of Noor’s axiom used by Lipman and Pesendorfer (2013).
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direct non-consequentialist welfare effects of maintaining the availability of unchosen

but virtuous options. The difference in interpretation is perhaps most salient when

considering Kopylov’s notion of comparative perfectionism. His comparison exclusively

invokes ex-ante preferences, whereas we argue that comparative naiveté must invoke

both ex-ante and ex-post choice. Finally, both Noor (2011) and Kopylov (2012) are

interested in the more general self-control preferences of Gul and Pesendorfer (2001),

whereas we restrict attention to the Strotzian case.10

3.1 Application: Quasi-Hyperbolic Preferences

As a specific application of the previous equivalences, we consider the quasi-hyperbolic

model of time inconsistency parameterized by the present-bias factor β. Let C = [a, b]N

be a set of infinite-horizon consumption streams, with elements c = (c1, c2, . . . ) ∈ C.11

A lottery p ∈ ∆(C) resolves immediately and yields a consumption stream. We focus

on the simple case with one-shot resolution of uncertainty for expositional parsimony,

but all of the following results generalize to richer settings that incorporate temporal

lotteries or true dynamic choice.12 In more general dynamic environments, simple

atemporal lotteries over consumption streams provide sufficient choice observations to

generate the following comparative statics.

Suppose the commitment preference over random consumption streams is repre-

sented by an expected-utility function whose values U(c) = U(δc) over deterministic

streams (that is, whose Bernoulli utility indices) comply with exponential discounting

U(c) =
∞∑
t=1

δt−1u(ct) (1)

for some instantaneous utility function u : [a, b]→ R. The decision-maker understands

that she will suffer present bias as parameterized in the quasi-hyperbolic discounting

model, but underestimates its magnitude. Specifically, her choice from a menu of

10We do explore models with costly self-control in a companion paper.
11The product topology on C is compact and metrizable.
12Kreps and Porteus (1978) were the first to provide a complete analysis of dynamic choice with

uncertainty that resolves gradually through time (i.e., temporal lotteries). The models of temptation
in Gul and Pesendorfer (2004) and Noor (2011) used an infinite horizon version of such a setting.
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consumption streams maximizes the expected-utility function defined by

V (c) = u(c1) + β
∞∑
t=2

δt−1u(ct). (2)

On the other hand, she anticipates her choice from a menu of consumption streams

will maximize the expected-utility function defined by

V̂ (c) = u(c1) + β̂
∞∑
t=2

δt−1u(ct). (3)

The individual’s ex-ante behavior reflects an optimistic belief that her future present-

bias parameter is β̂, yet her ex-post behavior actually uses the present-bias parameter

β.

Definition 9. A quasi-hyperbolic (QH) representation of (%, C) is a quadruple (u, β, β̂, δ)

of a continuous and nontrivial function u : [a, b] → R and scalars β, β̂ ∈ (0, 1] and

δ ∈ (0, 1), such that (U, V, V̂ ) is a Strotz representation for (%, C), where U , V , and V̂

satisfy Equations (1), (2), and (3).

The behavioral definition of naiveté implies the intuitive restriction that β̂ ≥ β.

Corollary 1. Suppose (%, C) has a QH representation (u, β, β̂, δ). Then the individual

is naive if and only if β̂ ≥ β (and is sophisticated if and only if β̂ = β).

Proof. By Theorem 1, the individual is naive if and only if V̂ ≈ αU + (1 − α)V for

some α ∈ [0, 1], where the functions U , V , and V̂ satisfy Equations (1), (2), and (3),

respectively. Note that

αU(c) + (1− α)V (c) = u(c1) + (α + (1− α)β)
∞∑
t=2

δt−1u(ct).

Since the term u(c1) appears in this expression without any scalar multiple, conclude

that V̂ = αU + (1− α)V and hence β̂ = α + (1− α)β ∈ [β, 1]. �

A similar application of the characterization of comparative naiveté in Theorem 2

provides another set of intuitive comparative restrictions. First, the more naive indi-

vidual has more optimistic beliefs about her future patience: β̂1 ≥ β̂2. Second, the

more naive individual’s behavior is more present-biased: β1 ≤ β2. These restrictions
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are also necessary, so the comparison of alternative statistics such as β̂i − βi or β̂i/βi

will not work. For example, β̂1 − β1 ≥ β̂2 − β2 is generally insufficient to guarantee

individual 1 is more naive than individual 2 without knowing that β̂1 ≥ β̂2 and β1 ≤ β2.

Corollary 2. Suppose (%1, C1) and (%2, C2) have QH representations (u1, β1, β̂1, δ1)

and (u2, β2, β̂2, δ2). Then individual 1 is more naive than individual 2 if and only if

u1 ≈ u2, δ1 = δ2, and β̂1 ≥ β̂2 ≥ β2 ≥ β1.

The proof is entirely analogous to that of Corollary 1, hence omitted.

3.2 Application: Diminishing Impatience

The analysis of the quasi-hyperbolic representation in the previous section extends to

more general patterns of discounting, such as true hyperbolic discounting. We now

relate several properties of discount functions to properties of the perceived discount

functions for individuals who satisfy our definition of naiveté. While the prior section

corroborates the existing parameter restriction β̂ ≥ β for naiveté with quasi-hyerbolic

discounting, the analogous formulation for general diminishing impatience is less un-

derstood.13 This section introduces the appropriate restrictions for general discounting

while elucidating a common theme through our nonparametric notion of naiveté. That

is, the definition of naiveté is useful not only in verifying existing parametric formu-

lations of naiveté, but also in generating novel formulations for less-studied models.

As a side benefit, the analysis also uncovers structural relationships between temporal

rates of substitution in the anticipated discounting and the impatience of the actual

discounting, providing new observationally equivalent tests of diminishing impatience

in consumption over time.

Say that D : N∪{0} → (0, 1] is a discount function if D(0) = 1 and
∑∞

t=0 D(t) <∞.

Suppose as before that consumption in periods t = 1, 2, . . . is given by (c1, c2, . . . ) ∈
C = [a, b]N. Period 0 commitment preferences over deterministic consumption streams

starting in period 1 are represented by

U(c) =
∞∑
t=1

D(t)u(ct). (4)

13Prelec (2004) studies the degree of time inconsistency for a single discount function D, as captured
by log-concavity. He suggests this as a criterion for evaluating sophistication, but this approach is
clearly conceptually remote from our notion of sophistication that relies on comparing D with a
believed discount funtion D̂.

14



Suppose that in period 0 the individual believes that she will apply the discount func-

tion D̂ in the subsequent period, which yields the following anticipated temptation

utility for deterministic consumption streams:

V̂ (c) =
∞∑
t=1

D̂(t− 1)u(ct). (5)

In reality, suppose preferences over consumption streams are stationary, and period 1

choices actually maximize

V (c) =
∞∑
t=1

D(t− 1)u(ct). (6)

Definition 10. A discounting representation of (%, C) is a triple (u,D, D̂) of a contin-

uous and nontrivial function u : [a, b]→ R and discount functions D and D̂, such that

(U, V, V̂ ) is a Strotz representation for (%, C), where U , V̂ , and V satisfy Equations (4),

(5), and (6).

The quasi-hyperbolic representations discussed in the previous section are special

cases of the discounting representations where

D(t) =

1 if t = 0

βδt if t > 0.

and

D̂(t) =

1 if t = 0

β̂δt if t > 0.

Two general properties of discount functions will be important.

Definition 11. A discount function D : N ∪ {0} → (0, 1] exhibits diminishing impa-

tience if
D(0)

D(1)
>

D(t)

D(t+ 1)
(∀t ∈ N),

and exhibits strong diminishing impatience if

D(t)

D(t+ 1)
>
D(t+ 1)

D(t+ 2)
(∀t ∈ N ∪ {0}).
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Diminishing impatience requires that the intertemporal rate of substitution for any

pair of successive periods in the future is strictly more balanced than the intertempo-

ral rate of substitution between today and tomorrow. Strong diminishing impatience

further requires that the intertemporal rate of substitution between successive periods

is strictly declining over time. Quasi-hyperbolic discount functions exhibit diminishing

impatience but not strong diminishing impatience because the discount factor between

t and t + 1 is constant after t = 1, whereas true hyperbolic discounting, on the other

hand, exhibits strong diminishing impatience.

The following corollary of Theorem 1 uncovers the implications of diminishing and

strong diminishing impatience on the perceived future impatience of a naive individual.

The individual believes that her ex-post intertemporal rate of substitution between

period 1 and period t+ 1 will be governed by the discount factor D̂(t). This discount

factor is a convex combination of the virtuous ex-ante discount factor D(t+1)/D(1) and

the actual tempting discount factor D(t) that governs the intertemporal consumption

that the individual will actually choose tomorrow.

Corollary 3. Suppose (%, C) has a discounting representation (u,D, D̂). Then the

individual is naive if and only if there exists α ∈ [0, 1] such that

D̂(t) = α
D(t+ 1)

D(1)
+ (1− α)D(t), ∀t ∈ N ∪ {0}, (7)

and the individual is sophisticated if and only if α = 0. In addition, if the individual

is strictly naive (i.e., α > 0), then

1. The discount function D exhibits diminishing impatience if and only if

D(0)

D(t)
>
D̂(0)

D̂(t)
(∀t ∈ N).

2. The discount function D exhibits strong diminishing impatience if and only if

D(t)

D(t+ 1)
>

D̂(t)

D̂(t+ 1)
(∀t ∈ N ∪ {0}).

The two equivalences under naiveté are surprising because they relate (strong)

diminishing impatience of the actual temptation, as captured in D, with the intertem-

poral rate of substitution in the believed temptation, as captured in D̂. The first claim
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says that for a naive individual, diminishing impatience is equivalent to beliefs being

biased toward saving desirable consumption for a later date t rather than in the present

period 0, as reflected in D̂(0)/D̂(t) < D(0)/D(t). In other words, under-appreciating

the temptation for immediate consumption versus later consumption is an inherent fea-

ture of naiveté with diminishing impatience. If beliefs are ever biased in the opposite

direction (with projected undersaving) then the individual cannot exhibit diminish-

ing impatience in her virtuous utility. Similarly, under-appreciation of the temptation

to shift good consumption to immediately prior time periods is an inherent feature

of strong diminishing impatience with naiveté. Note that the results do not suggest

a relationship between the diminishing impatience of the actual temptation and the

diminishing impatience of the believed temptation.

4 Random choice

We now extend the analysis from the prior section to random choice rules. For any

λx ∈ ∆(∆(C)), its average choice m(λx) is the expectation of the identity function

under λx, or formally m(λx) =
∫
p dλx ∈ ∆(C). That is, m(λx) reduces the compound

lottery λx into a single lottery. The definitions in the prior section for deterministic

choice then generalize by considering reductions of random choices. This reduction

from a distribution over multiple lotteries to a single lottery does not assume any

attitude towards risk, such as risk neutrality, over deterministic outcomes in C.14

Definition 12. An individual is sophisticated if, for all menus x,

x ∼ {m(λx)}.

An individual is naive if, for all menus x,

x % {m(λx)}.

A sophisticate is indifferent between choosing from a menu x tomorrow and com-

mitting to the average choice m(λx) from that menu. A naif anticipates making more

virtuous choices, on average, than she actually will make. The proviso from the prior

14Our analysis implicitly assumes indifference to compounding. Indifference to compounding can
be relaxed by considering appropriate certain equivalents rather than assuming indifference between
λx and m(λx).
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subsection regarding the assumption of consequentialism and lack of indirect menu ef-

fects applies here as well. When λx involves no randomness, this definition reduces to

the prior one for deterministic choice: If λx = δp then the corresponding deterministic

choice function takes C(x) = p. Since m(δp) = p, this implies m(λx) = C(x).

We use the same definition of more temptation averse for random choice as for

deterministic choice, but we must extend our previous definition of more virtuous to

account for randomness in choice.

Definition 13. Individual 2 is more virtuous than individual 1 if, for all menus x and

lotteries p,

{p} �2 {m(λx2)} =⇒ {p} �1 {m(λx1)}.

The average choice of the more sophisticated individual is more virtuous.

Definition 14. Suppose individuals 1 and 2 are naive. Individual 1 is more naive than

individual 2 if individual 2 is more temptation-averse and more virtuous than individual

1.

A generalization of the classic Strotz model is the random Strotz model that ad-

mits uncertainty about future temptations. For example, a dieter might crave potato

chips at some times and chocolate cake at other times. Dekel and Lipman (2012)

provide a thorough analysis of the random Strotz model. Since a single temptation

is parametrized as a single utility vector, a random temptation is parametrized as a

probability measure over utility vectors. Note that even if actual choices are degen-

erate, the random Strotz model is important because it allows an individual to be

mistakenly uncertain about her future behavior, while such uncertainty is excluded by

the standard Strotz representation.

In what follows, let V denote the set of all continuous functions v : C → R, and

endow V with the supremum norm and corresponding Borel σ-algebra. We can identify

V with the set of all expected-utility functions on ∆(C) by letting v(p) ≡
∫
C
v(c) dp.

As before, we say u is a nontrivial expected-utility function if it is not constant. We

say µ̂ is a nontrivial measure on V if it assigns probability zero to the set of constant

functions.15

15Note that the restriction to nontrivial measures in the definitions of the random Strotz represen-
tations is without loss of generality since any weight assigned to constant functions can be moved to
the commitment utility u without altering the ex-ante preference or ex-post random choice rule.
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Definition 15. A random Strotz representation of % is a pair (u, µ̂) of a nontrivial

expected-utility function u and a nontrivial probability measure µ̂ over V such that the

function U : K(∆(C))→ R defined by

U(x) =

∫
V

max
p∈Bv(x)

u(p) dµ̂(v)

is a utility representation of %.

The analogous representation of random choice is more cumbersome because the

maximizing Strotz choice set Bu(Bv(x)) has potentially multiple elements for a fixed

temptation utility v ∈ V , in turn generating multiple choice probabilities over x for a

fixed probability measure over V . A random choice rule maximizes a random Strotz

representation if it is generated by some selection function from the correspondence

mapping temptations v to possible choices Bu(Bv(x)).16

Definition 16. A random Strotz representation of λ is a pair (u, µ) of a nontrivial

expected-utility function u and a nontrivial probability measure µ over V such that, for

all menus x and all measurable y ⊂ x,

λx(y) = µ(p−1
x (y))

for some measurable selection function px : V → x with px(v) ∈ Bu(Bv(x)) for all

v ∈ V.17

Definition 17. A random Strotz representation of (%, λ) is a triple (u, µ, µ̂) such that

(u, µ̂) is a random Strotz representation of % and (u, µ) is a random Strotz represen-

tation of λ.

The definition of naiveté for random Strotz is the stochastic generalization of the

definition for deterministic Strotz. In the degenerate case, naiveté implies the believed v̂

is more u-aligned than v: v̂ �u v. In the random case, the believed distribution over all

possible temptations stochastically dominates the actual distribution of temptations,

16Just as there can be a multiple choice functions that maximize the same deterministic Strotz
representation, there can be multiple random choice rules that maximize the same random Strotz rep-
resentation. However, this multiplicity is not important for our results since observing any maximizing
random choice rule provides sufficient information for our comparatives.

17Since λ is taken as primitive, the selection function px is identified almost surely with respect to
µ.
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where stochastic dominance is with respect to the �u order. The following relation

formalizes the stochastic order generated by �u. As is standard, a stochastically

dominant measure puts more weight on the upper contour sets of the basic ordering

�u over the state space. The following definitions adapt the technology developed by

Dekel and Lipman (2012).

Definition 18. Let u be an expected-utility function. A measurable set U ⊂ V is a

u-upper set if, for any v ∈ U and v′ ∈ V, if v′ �u v then v′ ∈ U .

We let �u notate both the basic ordering over expected-utility functions and the

induced stochastic order over measures on expected-utility functions. Note that v �u v
′

(in the determinate sense) is equivalent to δv �u δv′ (in the stochastic sense).

Definition 19. Let u be an expected-utility function, and let µ, µ′ be probability mea-

sures over V. Then µ is more u-aligned than µ′, written as µ�u µ
′, if µ(U) ≥ µ′(U)

for all u-upper sets U .

Generalizing the earlier result, absolute naiveté is equivalent to µ̂ dominating µ in

the stochastic order generated by �u.

Theorem 3. Suppose C has finite cardinality, and suppose (%, λ) has a random Strotz

representation (u, µ, µ̂). Then the individual is naive if and only if µ̂ �u µ (and is

sophisticated if and only if µ̂�u µ and µ�u µ̂).

Analogously, comparative naiveté induces a similar ordering over individuals’ pre-

dictions and behaviors but in a stochastic sense.

Theorem 4. Suppose C has finite cardinality, and suppose (%1, λ1) and (%2, λ2) have

random Strotz representations (u1, µ1, µ̂1) and (u2, µ2, µ̂2). Then individual 1 is more

naive than individual 2 if and only if u1 ≈ u2 ≡ u and

µ̂1 �u µ̂2 �u µ2 �u µ1.

To aid intuition further, we will highlight the corollaries of these characterizations

for the case where the uncertainty over future behavior is only over the magnitude

of the future temptation, and not in its basic direction. For example, the individual

knows that she will crave sweet snacks (but not salty snacks) ex post, but is uncertain

of how strong her craving for sweets will be.

In what follows, say two expected-utility functions u and v are independent if they

are nontrivial and it is not the case that v ≈ u or v ≈ −u.
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Definition 20. An uncertain intensity Strotz representation of % is a triple (u, v, F̂ )

of two independent expected-utility functions u, v and a cumulative distribution function

F̂ on [0, 1] such that the function U : K(∆(C))→ R defined by

U(x) =

∫ 1

0

max{u(p) : p ∈ Bαu+(1−α)v(x)} dF̂ (α)

is a utility representation of %.

Definition 21. An uncertain intensity Strotz representation of λ is a triple (u, v, F ) of

two independent expected-utility functions u, v and a cumulative distribution function

F on [0, 1] such that, for all menus x and all measurable y ⊂ x,

λx(y) =

∫ 1

0

1[px(α)∈y] dF (α)

for some measurable selection function px : [0, 1] → x with px(α) ∈ Bu(Bαu+(1−α)v(x))

for all α ∈ [0, 1].

Definition 22. An uncertain intensity Strotz representation of (%, λ) is a quadruple

(u, v, F, F̂ ) such that (u, v, F̂ ) is an uncertain intensity Strotz representation of % and

(u, v, F ) is an uncertain intensity Strotz representation of λ.

For the case of an uncertain intensity Strotz representation, the direction of the

temptation is known to be v, but the magnitude of that temptation relative to the

virtuous utility u is uncertain. The individual underestimates the influence of v, and

this bias is reflected in her belief F̂ over the intensities in [0, 1] putting more likelihood

on larger weighting of u (hence lower weighting of v) in the ex-post stage of choice.

Let ≥FOSD denote the usual first-order stochastic dominance order, with F̂ ≥FOSD F

if F̂ (α) ≤ F (α) for all α ∈ [0, 1].

Theorem 5. Suppose (%, λ) has a uncertain intensity Strotz representation (u, v, F, F̂ ).

Then the individual is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only

if F̂ = F ).

Theorem 6. Suppose (%1, λ1) and (%2, λ2) have uncertain intensity Strotz represen-

tations (u, v, F1, F̂1) and (u, v, F2, F̂2). Then individual 1 is more naive than individual

2 if and only if

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.
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4.1 Application: Eliaz and Spiegler (2006)

We now apply the general results for random Strotz to an important specialization

proposed by Eliaz and Spiegler (2006). In their model, an individual’s ex-post choice

will be governed by v as in the standard Strotz model. However, an individual’s ex-ante

assessment is that she will choose virtuously according to u with probability θ and will

face temptation and choose according to v with probability 1− θ. This is arguably the

simplest possible formula that features naive random temptation.

Definition 23. An Eliaz–Spiegler representation of % is a triple (u, v, θ) of two in-

dependent expected-utility functions u, v and a scalar θ ∈ [0, 1] such that the function

U : K(∆(C))→ R defined by

U(x) = θmax
p∈x

u(p) + (1− θ) max
p∈Bv(x)

u(p)

is a utility representation of %.

The implications of the general characterizations for random Strotz are immediate

for this special case. The individual mistakenly believes there is some θ ≥ 0 probability

that she will act virtuously and maximize u rather than v ex post, whereas she will

certainly maximize v in reality. The more naive individual believes her ex-post behavior

is more likely to be virtuous (θ1 ≥ θ2) while her actual (and nonrandom) behavior is

identical.

Corollary 4. Suppose % has an Eliaz–Spiegler representation (u, v, θ), and C has a

(deterministic) Strotz representation (u, v). Then the individual is naive (and is so-

phisticated if and only if θ = 0).

Proof. The deterministic ex-post choice of the individual can be expressed as a (degen-

erate) random choice rule λ that satisfies λx = δp for p = C(x). Define a cumulative

distribution function F on [0, 1] by F (α) = 1 for all α ∈ [0, 1], and define a cumula-

tive distribution function F̂ by F̂ (α) = 1 − θ for 0 ≤ α < 1 and F̂ (1) = 1. Note that

(u, v, F, F̂ ) is an uncertain intensity Strotz representation for (%, λ). Then F̂ ≥FOSD F ,

and F̂ = F if and only if θ = 0. The result then follows from Theorem 5. �

An analogous application of Theorem 6 yields the following corollary.

Corollary 5. Suppose %1 and %2 have the Eliaz–Spiegler representations (u, v, θ1) and

(u, v, θ2), and C1 and C2 both have the Strotz representation (u, v). Then individual 1

is more naive than individual 2 if and only if θ1 ≥ θ2.
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4.2 Application: Random Quasi-Hyperbolic Discounting

In this section, we describe a generalization of the quasi-hyperbolic discounting model

from Section 3.1 that permits uncertainty about the present-bias factor β. This random

quasi-hyperbolic discounting representation is a special case of the uncertain intensity

Strotz representation where the uncertainty about future intensity is parametrized as

uncertainty about the future present-bias parameter β. Several applications in different

areas employ naive uncertainty about future present bias. Section 4 of Heidhues and

Koszegi (2010) employs random quasi-hyperbolic discounting to explain the structure of

credit markets and the consequent welfare implications for consumers. Duflo, Kremer,

and Robinson (2011) use the Eliaz and Spiegler (2006) specification of random quasi-

hyperbolic discounting, where naiveté is limited to a mistaken belief of some chance

of virtuous exponential discounting in all future periods, in their study of fertilizer

adoption decisions by Kenyan farmers. Admitting uncertainty about intertemporal

substitution in economic models often usefully serves as a reduced-form proxy for a

shock in the economy, like wage uncertainty, or for heterogeneity across agents in an

aggregate economy, like the distribution of wealth. Similarly, random present-bias can

provide a parsimonious channel within the utility function for capturing uncertainty

about external factors that affect present-bias.

As in Section 3.1, maintain that consumption in periods t = 1, 2, . . . is given by

(c1, c2, . . . ) ∈ C = [a, b]N. Suppose the commitment preference over random consump-

tion streams is represented by an expected-utility function whose values U(c) = U(δc)

over deterministic streams satisfy exponential discounting, which is equivalent to the

extreme case where β = 1:

U(c) =
∞∑
t=1

δt−1u(ct). (8)

The maximally present-biased individual will value only immediate consumption in pe-

riod 1 and will ignore consumption in later periods, which is equivalent to the opposite

extreme case where β = 0:

V (c) = u(c1). (9)

For any intensity β on the virtuous utility U , we have

βU(c) + (1− β)V (c) = u(c1) + β
∞∑
t=2

δt−1u(ct).
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Therefore, uncertainty about the present-bias parameter β is equivalent to uncertainty

about the intensity of U relative to V , and the present-bias factor is exactly the relative

weighting of exponential discounting versus extreme impatience.

Definition 24. A random quasi-hyperbolic (RQH) representation of (%, λ) is a quadru-

ple (u, F, F̂ , δ) of a continuous and nontrivial function u : [a, b]→ R, a scalar δ ∈ (0, 1),

and cumulative distribution functions F and F̂ on [0, 1] such that (U, V, F, F̂ ) is an un-

certain intensity Strotz representation for (%, λ), where U and V satisfy Equations (8)

and (9).

Applying Theorem 5 to the random quasi-hyperbolic representation yields the fol-

lowing corollary: naive random quasi-hyperbolic individuals shift weight in their pre-

dictions away from low realizations of the present-bias factor β and towards high real-

izations of β.

Corollary 6. Suppose (%, λ) has a RQH representation (u, F, F̂ , δ). Then the individ-

ual is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

Similarly, the more naive random quasi-hyperbolic individual puts more unwar-

ranted mass on higher realizations of β than the more sophisticated individual. The

following corollary follows directly from Theorem 6.18

Corollary 7. Suppose (%1, λ1) and (%2, λ2) have RQH representations (u1, F1, F̂1, δ1)

and (u2, F2, F̂2, δ2). Then individual 1 is more naive than individual 2 if and only if

u1 ≈ u2, δ1 = δ2, and

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.

5 Welfare

We close by considering a setup that explores the welfare implications of policies that

introduce new commitment devices to naive consumers. Suppose the government con-

templates whether to provide an illiquid forced-savings device. This is equivalent to

18Note that Corollary 7 states that u1 ≈ u2 and δ1 = δ2 as part of the implication of individual
1 being more naive than individual 2. This follows from our previous observations that individual 2
being either more temptation averse or more virtuous than individual 1 implies that both have the
same commitment preference. The relationship between the distribution functions F̂1, F̂2, F1, F2 then
follows from Theorem 6.
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introducing an additional commitment device or menu x to the family of existing avail-

able menus; the new menu excludes immediate consumption beyond a certain level.

A pervasive finding is that the take-up of new commitment devices is minimal un-

der naiveté.19 Beyond mitigating the effectiveness of new commitment devices, we

find that new commitment devices can strictly decrease welfare when consumers are

naive. In fact, the existence of such strictly deleterious commitment devices charac-

terizes naiveté. Moreover, the marginal welfare effects of such interventions fail to be

monotone in sophistication.

Formally, we consider families of menus to understand the effects of introducing

additional commitment devices. For finite X ⊂ K(∆(C)), let x∗(X) = {x ∈ X :

x % y for all y ∈ X} denote the set of %-maximal menus from the family X. Let

C(X) ∈ C(x∗(X)) ≡ {C(x) : x ∈ x∗(X)}. That is, C(X) is the final consumption

from the family of menus X when the individual adheres to the following protocol:

first, she selects a %-maximal menu x ∈ x∗(X), and second, she consumes C(x). This

allows us to compare the final welfare from different families of commitment devices

by comparing their induced final choices, that is, X is better for an individual than Y

if {C(X)} % {C(Y )}.20

The next result makes the straightforward but important observation that adding

additional commitment devices always makes sophisticated individuals better off. The

converse result, that strictly naive individuals can always be made strictly worse off by

introducing available commitments devices, requires that singleton menus are dense in

the ex-ante preference as they are, for example, whenever a Strotz representation exists.

The literature already observed many specific situations where providing flexibility to

naive individuals makes them worse off. Our point is that this is a general phenomenon:

the possibility of such welfare loss is a necessary consequence of naiveté.

Recall that an individual is strictly naive if she is naive and not sophisticated.

Theorem 7. If an individual is sophisticated, then {C(X)} % {C(Y )} whenever X ⊃
Y . If singleton menus are %-dense and the individual is strictly naive, then there exist

19Several studies in this line are surveyed by Bryan, Karlan, and Nelson (2010).
20We follow the commonly employed approach of using ex-ante commitment preferences over sin-

gletons as the welfare criterion over final consumption ∆(C). Another established benchmark is the
Pareto welfare (partial) order based on improvements with respect to both ex-ante and ex-post pref-
erences. Since Theorems 7 and 9 involve changing ex-ante utility u with possible reciprocal changes
to ex-post utility v, they are no longer valid with respect to the Pareto welfare criterion. Theorems 8
and 10 involve losses to both ex-ante and ex-post utility, and therefore hold with respect to either
welfare criterion.
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X ⊃ Y with {C(X)} ≺ {C(Y )}.

Proof. By the standard revealed-preference argument, X ⊃ Y implies x % y for any

x ∈ x∗(X) and y ∈ x∗(Y ). Under sophistication, {C(x)} ∼ x % y ∼ {C(y)}. But

C(X) = C(x) for some x ∈ x∗(X) and C(Y ) = C(y) for some y ∈ x∗(Y ), so in particular

{C(X)} % {C(Y )}.
Now assume the individual is strictly naive: there exists a menu x with x � {C(x)}.

By %-denseness of the singletons, there exists some lottery p such that x � {p} �
{C(x)}. Let X = {x, {p}} and Y = {{p}}. Then C(Y ) = p and C(X) = C(x), so

{C(Y )} � {C(X)}. �

Example 1. As an example to illustrate the approach in Theorem 7, consider the stop-

ping problems studied by O’Donoghue and Rabin (1999) and O’Donoghue and Rabin

(2001). They demonstrate that extreme naifs (where β̂ = 1) will always procrastinate

longer than sophisticates on a task that requires immediate costs to yield a flow of

benefits and that partial naifs (where β̂ > β) always have some task that leads them

to procrastinate. We now show this prediction is not an artifact of quasi-hyperbolic

discounting but an almost inherent feature of general naiveté in these environments.

Suppose {d2} � {d1} � {d3}. Doing it now (in period 1) is tantamount to committing

to {d1}, while delaying means leaving the menu {d2, d3} available tomorrow. The only

way for the definition of naiveté to have bite in this domain is if C({d2, d3}) = d3 and

{d2, d3} � {d3}. If Y = {{d1}}, then the individual must do it now (in period 1). In

contrast, X = {{d1}, {d2, d3}} contains the option of doing it now, {d1}, or delaying

and having the option in the next period whether to do it or not, {d2, d3}. Then

C(Y ) = d1 and C(X) = d3, so {C(Y )} � {C(X)}. That is, the naive individual delays

longer and gets less welfare than the sophisticated individual if she is given the option

X to delay past the first period. The actual choices are worse with X because the

individual delays under the (incorrect) belief that she will do it in the following period.

The nature of procrastination for naive individuals is therefore neither an artifact of

(β, β̂, δ) preferences nor even really connected to time discounting. Rather, it is an

inherent consequence of the structure of the domain into possible menus (that is, only

menus consisting of remaining time periods are observed) and the force of the basic

definition of naiveté on this structured domain.

The prior theorem is intuitive because the additional menu that leads to a less

virtuous final selection is possibly a superset of an already available menu. Clearly,
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increasing flexibility for individuals who mistakenly believe they will virtuously exercise

that flexibility can decrease their welfare. The next result is sharper, but requires the

additional structure of the Strotz model. Under Strotz preferences, there always exists

a subset of an existing menu that leaves the individual worse off when added to the

family of commitments. That is, there exists a scenario where welfare is harmed by

adding stronger commitments (rather than more flexibility) that exclude choices which

are otherwise available in some existing forward plan in the status quo. The basic

intuition is as follows. Suppose that carrots are more virtuous than pretzels, but

pretzels are more virtuous than potato chips. When all three snacks are available, the

individual will choose pretzels. If she is naive, she might believe that removing the

availability of pretzels will induce her to eat carrots. Anticipating this, she throws the

pretzels away. Unfortunately, her prediction is mistaken and she ends up eating potato

chips, leaving herself worse off than she was before.

Say an individual has a preference for commitment if there exist menus y and x ⊂ y

such that x � y. If an individual has a preference for commitment, then she is not fully

naive in the sense of believing that her future tastes will be identical to her current

commitment preference.

Theorem 8. Suppose (%, C) admits a Strotz representation (u, v, v̂), where u and v are

independent.21 If the individual is strictly naive and has a preference for commitment,

then there exist menus y and x ⊂ y such that {C({x, y})} ≺ {C({y})}.

Proof. Under the assumptions of the theorem, it can be shown that there exist lotteries

p1, p2, p3 such that22

u(p1) > u(p2) > u(p3)

v̂(p2) > v̂(p1) > v̂(p3)

v(p2) > v(p3) > v(p1).

Let y = {p1, p2, p3} and x = {p1, p3}. The rankings of the lotteries according to u and

21That is, it is not that case that v ≈ u or v ≈ −u.
22Proof: By Theorem 1, v̂ �u v. Since it is not the case that v ≈ −u, this implies v̂ ≈ αu+(1−α)v.

Note that α > 0 since the individual is strictly naive, and α < 1 since% has preference for commitment.
Hence, it is not the case that v̂ ≈ u, so there exist lotteries p, q such that v̂(p) = v̂(q) and u(p) > u(q).
Since v̂ ≈ αu + (1 − α)v for α ∈ (0, 1), this also implies that v(p) < v(q). Since it is not the case
that v ≈ −u, there exist lotteries r, s such that u(r) > u(s) and v(r) > v(s), which also implies
v̂(r) > v̂(s). It is easy to show that the lotteries p1 = (1− ε)p+ ε[(1/2)s+ (1/2)r], p2 = (1− ε)q+ εr,
p3 = (1− ε)q + εs have the desired properties for ε > 0 sufficiently small.
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v̂ imply that x ∼ {p1} � {p2} ∼ y. The ranking according to v implies that C(x) = p3

and C(y) = p2. Therefore, {C({x, y})} = {p3} ≺ {p2} = {C({y})}. �

Example 2. For a concrete illustration of Theorem 8, consider an individual facing a

three-period consumption-savings problem. In period 0, she initially chooses to invest

money in a liquid savings account or in a retirement account. In period 1, she then

decides whether to make a withdrawal from her savings. If she initially invested in the

retirement account, then her early withdrawal results in a tax penalty. In period 2,

she finally consumes the remaining balance of the savings or retirement account. For

simplicity of exposition, we assume linear utility over static consumption and focus on

deterministic consumption streams.

Suppose the individual’s period 0 preference % has a Strotz representation (U, V̂ )

where

U(c1, c2) = c1 + c2 and V̂ (c1, c2) = c1 + β̂c2,

and suppose the individual’s period 1 choice function C has a Strotz representation

(U, V ) where

V (c1, c2) = c1 + βc2.

As standard, assume 0 < β < β̂ ≤ 1.

If the gross interest rate is R > 1 and the individual initially has unit wealth, then

investing in the liquid savings account is equivalent to choosing the menu

y = {(c1, c2) ∈ R2
+ : c1 + c2/R = 1}.

The retirement account has a proportional early withdrawal penalty τc1 associated

with a withdrawal of c1 in period 1, where τ ≥ 0. Then investing in the retirement

account is equivalent to choosing the menu

xτ = {(c1, c2) ∈ R2
+ : (1 + τ)c1 + c2/R = 1}.

Note that xτ ⊂ y, and that xτ = y if τ = 0. The actual choices from y and xτ are

C(y) =

(1, 0) if 1 > βR

(0, R) if 1 ≤ βR.
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and

C(xτ ) =

(1/(1 + τ), 0) if 1 > (1 + τ)βR

(0, R) if 1 ≤ (1 + τ)βR.

Suppose 1 > β̂R and (1 + τ)β̂R > 1 > (1 + τ)βR. In this case, the individual cor-

rectly anticipates choosing (1, 0) from the menu y. However, she incorrectly anticipates

choosing (0, R) from xτ , when in fact she will choose (1/(1 + τ), 0). She believes that

the tax penalty associated with the retirement account is high enough to deter her from

making early withdrawals in period 1, but in reality it is not. Since U(0, R) > U(1, 0),

this incorrect belief will lead the individual to initially invest in the illiquid retirement

account xτ over the liquid savings account y in period 0. Therefore, the availability of

the retirement account as a savings instrument is strictly detrimental, since

{C({xτ , y})} = {(1/(1 + τ), 0)} ≺ {(1, 0)} = {C({y})}.

Note that the perverse welfare effect associated with offering the individual the com-

mitment device xτ depends crucially on the level of the early withdrawal penalty: τ

is high enough that the individual thinks it will deter early withdrawals, but it is low

enough that it actually does not. Increasing τ until (1+τ)βR > 1 makes the retirement

account a strong enough commitment device to increase welfare. For τ is this region,

{C({xτ , y})} = {(0, R)} � {(1, 0)} = {C({y})}.

While some forms of partial commitment can make naive individuals worse off,

some classes of commitments can unambiguously improve welfare. In Example 2,

increasing the early withdrawal penalty magnifies the strength of the commitment

device xτ . When τ is small and the commitment device is weak, the welfare effect of this

commitment device is neutral or negative. Once τ exceeds some threshold—the exact

value of which depends on the preference parameters—the commitment device becomes

strong enough to deliver a positive welfare impact. Expanding on this observation, the

following result shows there is a class of commitment devices that will unambiguously

improve welfare for any preference: complete commitments to a single outcome. This

holds for both sophisticated and strictly naive individuals.

Theorem 9. Assume C(X ∪ {x}) /∈ x implies C(X ∪ {x}) = C(X).23 If an individual

23This property simply implies that the tie-breaking procedure used in the selection function C
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is naive, then {C(X ∪ {p})} % {C(X)} for all lotteries p.

Proof. By the assumed properties of C, either C(X ∪ {p}) = C(X), in which case the

results holds trivially, or C(X∪{p}) = p. In the latter case, we must have {p} % x for all

x ∈ X. Since C(X) = C(y) for some y ∈ x∗(X), naiveté then implies {p} % y % {C(y)},
and hence {C(X ∪ {p})} % {C(X)}. �

When menu choice is driven purely by temptation, adding extreme commitment

devices is never harmful. Of course, such extreme commitment is detrimental if in-

dividuals have uncertain virtuous tastes that lead to demand for flexibility. Optimal

design of commitment devices for naive individuals with some demand for flexibility

remains an important open question, as do suitable comparative statics that isolate

naiveté about future temptations and unawareness of future virtuous taste contingen-

cies in a unified manner.24

Finally, a natural question is whether a comparative analog of Theorems 7 and 8

holds. Specifically, consider the following conjecture: If an individual is made better

off by the introduction of a commitment device, then any other individual who is more

sophisticated is also made better off. Excluding the extreme cases of full sophistication

or full naiveté, the following theorem shows that this conjecture fails. In fact, for a

generic pair of comparable individuals, there exists a new commitment device that

leaves the more sophisticated individual strictly worse off while having no effect on the

more naive individual.

Theorem 10. Suppose (%1, C1) and (%2, C2) admit Strotz representations (u1, v1, v̂1)

and (u2, v2, v̂2). Suppose individual 2 is strictly naive and has a preference for commit-

ment, and that u2 and v2 are independent. If individual 1 is strictly more naive than

individual 2,25 then there exist menus y and x ⊂ y such that {C1({x, y})} ∼1 {C1({y})}
and {C2({x, y})} ≺2 {C2({y})}.

The failure of a monotone relationship between welfare and sophistication resonates

with earlier findings, e.g., Heidhues and Koszegi (2009) examine a setting where indi-

viduals can pay an up-front cost to impose a penalty on indulging future temptations.

does not change when unchosen options are added. This avoids spurious welfare conclusions that are
artifacts of the tie-breaking protocol.

24Amador, Werning, and Angeletos (2006) study a consumption-savings problem combining flexi-
bility and temptation, but under the assumption of full sophistication.

25That is, individual 1 is more naive than individual 2, but it is not the case that individual 2 is
also more naive than individual 1. This restriction still permits a shared ex-ante or a shared ex-post
Strotz representation, but not both.

30



They show that welfare can fail to be monotonic in beliefs, that is, more accurate

values of β̂ do not guarantee higher welfare.26 However, this finding is for a fixed

set of commitments, or for a fixed policy regime. To understand the distribution of

marginal welfare effects across individuals from introducing new commitment devices,

the relevant consideration is comparing individuals’ differences in welfare across two

regimes. Theorem 10 speaks to those changes in welfare, providing a negative result

that suggests caution when considering the distribution of welfare effects induced by

policy changes affecting individuals with heterogeneous levels of naiveté.

26In contrast, holding beliefs fixed, welfare is monotonically increasing with more virtuous actual
behavior. Trivially, if two individuals share the same ex-ante preference, then the more virtuous
individual is better off in any fixed two-stage decision problem X than the less virtuous individual.
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A A Comparative from Dekel and Lipman (2012)

In this section, we summarize a relevant result from Dekel and Lipman (2012) that will play

a central role in our proofs of Theorems 3 and 4.

Theorem 11 (Dekel and Lipman (2012)). Suppose C has finite cardinality. Suppose %1 and

%2 have random Strotz representations (u1, µ1) and (u2, µ2). Then %2 is more temptation

averse than %1 if and only if u1 ≈ u2 ≡ u and µ1 �u µ2.

Theorem 4 in Dekel and Lipman (2012) establishes the equivalence of %2 being more

temptation averse than %1 and another condition on the representations that they refer to as

conditional dominance. However, they also establish that µ1 �u µ2 as an intermediate step

in their proof.27 The equivalence asserted in Theorem 11 is also stated explicitly in Theorem

4 of their working paper, Dekel and Lipman (2010).28

B Proofs

This section contains proofs omitted from the main text. The proofs of Theorems 5, 6, and

10 are further relegated to the Online Appendix.

B.1 Preliminaries

Lemmas 1 and 2 below are used in the proofs of Theorems 1 and 2. In the case of finite

C, it is easy to show that these lemmas are equivalent to Lemma 3 in Dekel and Lipman

(2012), who also noted the connection to the Harsanyi Aggregation Theorem. Since we allow

compact C, we include the short proofs of these results in the Online Appendix to show that

no technical problems arise in our more general domain.

Lemma 1. Let u, v, v′ be nontrivial expected-utility functions defined on ∆(C). If for all

lotteries p and q we have

[
u(p) > u(q) and v′(p) > v′(q)

]
=⇒ v(p) ≥ v(q),

27To show that %2 being more temptation averse that %1 implies µ1 �u µ2, the relevant results in
Dekel and Lipman (2012) are the following: Lemma 3 shows that a partial order vCuv

′ used in their
paper is equivalent to our order v �u v

′ (ignoring their normalization of utility functions). Lemmas
4, 5, and 6 and the arguments on page 1296 show that for any set W that is closed under Cu (is a
u-upper set in our terminology), µ1(W ) ≥ µ2(W ).

28Dekel and Lipman (2010) impose a normalization on the set of utility functions used in their result.
However, by the uniqueness properties of the random Strotz representation established in Theorem
3 of Dekel and Lipman (2012), the probability of any u-upper set is the same for any random Strotz
representation of the same preference. Therefore, their normalization of utilities is inconsequential for
the result.
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then v �u v
′.

Lemma 2. Let u, v, v′ be expected-utility functions defined on ∆(C), and suppose v �u v
′.

Then for any menu x,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q).

The following lemma shows that the more temptation averse comparative is implied by

µ1 �u µ2. In the case of finite C, this is precisely the necessity part of Theorem 11. Since

we wish to include several applications where C is compact but not finite (e.g., dynamic

consumption problems where C = [a, b]N), some of our results only require compact C (e.g.,

Theorems 1, 2, 5, and 6). Lemma 3 is used in the proofs of those results, and is itself proved

in the Online Appendix.

Lemma 3. Suppose C is compact. Suppose %1 and %2 have random Strotz representations

(u1, µ1) and (u2, µ2). If u1 ≈ u2 ≡ u and µ1 �u µ2, then %2 is more temptation averse than

%1.

B.2 Proof of Theorem 1

To establish sufficiency, suppose the individual is naive. Then for any lotteries p and q,

[
u(p) > u(q) and v(p) > v(q)

]
=⇒

[
{p} � {q} and C({p, q}) = p

]
=⇒ {p, q} % {p} � {q} (naiveté)

=⇒ v̂(p) ≥ v̂(q).

By Lemma 1, this implies that v̂ �u v.

To establish necessity, suppose v̂ �u v. By Lemma 2, this implies that for any menu x,

U(x) = max
p∈Bv̂(x)

u(p) ≥ max
q∈Bv(x)

u(q) = u(C(x)).

Thus x % {C(x)}, so the individual is naive.

B.3 Proof of Theorem 2

Theorem 2 follows from the two lemmas below together with Theorem 1.

Lemma 4. Suppose %1 and %2 have Strotz representations (u1, v̂1) and (u2, v̂2). Then indi-

vidual 2 is more temptation averse than individual 1 if and only if u1 ≈ u2 ≡ u and v̂1 �u v̂2.
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Proof. Necessity follows as a special case of Lemma 3, since v̂1 �u v̂2 is equivalent to δv̂1 �u

δv̂2 . To establish sufficiency, suppose individual 2 is more temptation averse than individual

1. First, observe that taking x = {q} in Definition 2 yields {p} �1 {q} =⇒ {p} �2 {q}.
Since u1 and u2 are nontrivial, it is a standard result that this implies u1 ≈ u2. Let u ≡ u2

in what follows. Then for any lotteries p and q,

[
u(p) > u(q) and v̂2(p) > v̂2(q)

]
=⇒ {p, q} ∼2 {p} �2 {q}

=⇒ {p, q} %1 {p} �1 {q} (2 more temptation averse than 1)

=⇒ v̂1(p) ≥ v̂1(q).

By Lemma 1, this implies that v̂1 �u v̂2. �

Lemma 5. Suppose %1 and %2 have Strotz representations (u1, v̂1) and (u2, v̂2), and C1 and

C2 have Strotz representations (u1, v1) and (u2, v2). Then individual 2 is more virtuous than

individual 1 if and only if u1 ≈ u2 ≡ u and v2 �u v1.

Proof. To establish sufficiency, suppose individual 2 is more virtuous than individual 1. First,

observe that taking x = {q} in Definition 3 yields {p} �2 {q} =⇒ {p} �1 {q}. Since u1

and u2 are nontrivial, it is a standard result that this implies u1 ≈ u2. Let u ≡ u2 in what

follows. Then for all menus x and lotteries p,

u(p) > u(C2(x)) =⇒ u(p) > u(C1(x)). (10)

Therefore, for any lotteries p and q,

[
u(p) > u(q) and v1(p) > v1(q)

]
=⇒ u(C1({p, q})) = u(p) > u(q)

=⇒ u(C2({p, q})) ≥ u(p) > u(q) (contrapositive of Equation (10))

=⇒ v2(p) ≥ v2(q).

By Lemma 1, this implies that v2 �u v1.

To establish necessity, suppose u1 ≈ u2 ≡ u and v2 �u v1. By Lemma 2, v2 �u v1

implies that for any menu x,

u(C2(x)) = max
p∈Bv2 (x)

u(p) ≥ max
q∈Bv1 (x)

u(q) = u(C1(x)).

Thus u(p) > u(C2(x)) =⇒ u(p) > u(C1(x)), and hence individual 2 is more virtuous than
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individual 1. �

B.4 Proof of Corollary 3

The proof of the characterization of naiveté in Equation (7) is a simple generalization of the

arguments in the proof of Corollary 1 and is therefore omitted. To prove claim 1, note that

by Equation (7),

D̂(t) > D(t) ⇐⇒ D(t+ 1)

D(1)
> D(t) =

D(t)

D(0)
.

The latter holds for all t ∈ N if and only if D exhibits diminishing impatience.

To prove claim 2, note first that

D̂(t)

D̂(t+ 1)
=

αD(t+1)
D(1) + (1− α)D(t)

αD(t+2)
D(1) + (1− α)D(t+ 1)

=
αD(t+1)

D(t) + (1− α)D(1)

αD(t+2)
D(t+1) + (1− α)D(1)

· D(t)

D(t+ 1)
.

Therefore,
D̂(t)

D̂(t+ 1)
<

D(t)

D(t+ 1)
⇐⇒ D(t+ 1)

D(t)
<
D(t+ 2)

D(t+ 1)
.

The latter holds for all t ∈ N ∪ {0} if and only if D exhibits strong diminishing impatience.

B.5 Proof of Theorem 3

Suppose the random choice rule λ has a random Strotz representation (u, µ). The ex ante

preference of a sophisticated individual—which may differ from the individual’s actual ex

ante preference if she is naive—must also be represented by (u, µ). The following lemma

shows how this hypothetical sophisticated preference can be determined from λ and u.

Lemma 6. Suppose λ has a random Strotz representation (u, µ). Define a binary relation

%∗ on K(∆(C)) by

x %∗ y ⇐⇒ u(m(λx)) ≥ u(m(λy)).

Then (u, µ) is a random Strotz representation for %∗.

Proof. Since (u, µ) represents λ, by definition there exists, for all menus x, a measurable

selection function px : V → x with px(v) ∈ Bu(Bv(x)) such that

λx(y) = µ(p−1
x (y))
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for all measurable y ⊂ x. Thus λx is the distribution on x induced by the random variable

px defined on the measure space (V, µ). Therefore, the standard change of variables formula

together with the linearity and continuity of u imply∫
V

max
p∈Bv(x)

u(p) dµ(v) =

∫
V
u(px(v)) dµ(v)

=

∫
x
u(p) dλx(p) = u

(∫
x
p dλx(p)

)
= u(m(λx)),

as desired. �

Turning now to the proof of Theorem 3, fix random Strotz representations (u, µ̂) and

(u, µ) for % and λ, respectively, and define %∗ as in Lemma 6. To establish sufficiency,

suppose the individual is naive. Then for all menus x and lotteries p,

{p} � x =⇒ {p} � {m(λx)} (naiveté)

=⇒ u
(
m
(
λ{p}

))
= u(p) > u(m(λx))

=⇒ {p} �∗ x.

Thus %∗ is more temptation averse than %. Since (u, µ) represents %∗ by Lemma 6, The-

orem 11 implies that µ̂ �u µ. If the individual is sophisticated, then a similar argument

shows that the converse also holds: % is also more temptation averse than %∗ (in particular,

%=%∗) and hence µ�u µ̂.

The following lemma establishes necessity and shows, in particular, that the restriction

to finite C is not needed for this direction.

Lemma 7. Suppose C is compact. Suppose % has a random Strotz representation (u, µ̂),

and λ has a random Strotz representation (u, µ). If µ̂�u µ then the individual is naive (and

if µ̂�u µ and µ�u µ̂ then the individual is sophisticated).

Proof. Suppose µ̂�u µ, and define %∗ as in Lemma 6. By Lemma 3, %∗ is more temptation

averse than %. By contrapositive, this is equivalent to the condition

x %∗ {p} =⇒ x % {p}.

Note that for any menu x, if we take p = m(λx) then

u(m(λx)) = u(p) = u
(
m
(
λ{p}

))
and hence x ∼∗ {p} = {m(λx)}. Since %∗ is more temptation averse than %, this implies x %

{m(λx)}. Thus the individual is naive. If we also have µ�u µ̂ then an analogous argument
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can be used to show that the condition above can be strengthened to x %∗ {p} ⇐⇒ x % {p}.
In this case, x ∼ {m(λx)} and hence the individual is sophisticated. �

B.6 Proof of Theorem 4

This result can be separated into three components, two of which have already been proved.

First, note that by Theorem 3, individual 2 is naive if and only if µ̂2 �u µ2, where u ≡ u2.

Second, by Theorem 11, individual 2 is more temptation averse than individual 1 if and only

if u1 ≈ u2 ≡ u and µ̂1 �u µ̂2. The final step is completed in the following lemma. Note that

the restriction to finite C is not needed for necessity; part 1 of the lemma can therefore be

used later in the proof of Theorem 6.

Lemma 8. Suppose %1 and %2 have random Strotz representations (u1, µ̂1) and (u2, µ̂2),

and λ1 and λ2 have random Strotz representations (u1, µ1) and (u2, µ2).

1. If u1 ≈ u2 ≡ u and µ2 �u µ1 then individual 2 is more virtuous than individual 1.

2. If C has finite cardinality and individual 2 is more virtuous than individual 1, then

u1 ≈ u2 ≡ u and µ2 �u µ1.

Proof. Define %∗1 and %∗2 as in Lemma 6 for λ1 and λ2, respectively. Then (u1, µ1) and

(u2, µ2) represent %∗1 and %∗2. Note that for all menus x and lotteries p,

{p} �i {m(λxi )} ⇐⇒ ui(p) > ui(m(λxi )) ⇐⇒ {p} �∗i x, i = 1, 2.

Therefore, individual 2 is more virtuous than individual 1 if and only if %∗1 is more temptation

averse than %∗2. If C has finite cardinality, then by Theorem 11, this is true if and only if

u1 ≈ u2 ≡ u and µ2 �u µ1. For any compact C (not necessarily finite), Lemma 3 shows that

if u1 ≈ u2 ≡ u and µ2 �u µ1, then %∗1 is more temptation averse than %∗2. �
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Additional Appendices for Online Publication

C Over-Estimation of Self-Control Problems

While our main focus is on naiveté in the traditional sense of underestimation of future

temptations, simple variations of our definitions can be used to model an individual who

overestimates her future temptations and is therefore overly cautious. In this section, we

summarize the implications of such pessimistic violations of sophistication. Formal results

are stated for the case the deterministic Strotz representation for simplicity, but the analogous

results for random choice are also true.

Definition 25. An individual is pessimistic if, for all menus x, {C(x)} % x.

An individual who is pessimistic has an actual temptation utility than is more aligned

with her normative utility than her anticipated temptation utility.

Theorem 12. Suppose (%, C) has a Strotz representation (u, v, v̂). Then the individual is

pessimistic if and only if v �u v̂.

The proof of this result is similar to that of Theorem 1 and is omitted.

Definition 26. Suppose that individuals 1 and 2 are pessimistic. Individual 1 is more pes-

simistic than individual 2 if individual 1 is more temptation averse and more virtuous than

individual 2.

In contrast to the case of individual 1 being more naive than individual 2, now individual

1 is both more cautious than individual 2 in the sense of being more temptation averse, and

also more virtuous. This comparative corresponds to a reversal of the ordering of temptation

utilities obtained in Theorem 2.

Theorem 13. Suppose (%1, C1) and (%2, C2) have the Strotz representations (u1, v1, v̂1) and

(u2, v2, v̂2). Then individual 1 is more pessimistic than individual 2 if and only if u1 ≈ u2 ≡ u
and

v1 �u v2 �u v̂2 �u v̂1.
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D Additional Proofs

D.1 Proof of Lemma 1

The main step in proving Lemma 1 is the following slight variation of Farkas’ Lemma.29

Lemma 9. Suppose f1, f2, g : ∆(C) → R are continuous and affine, and suppose f1 and f2

are not ordinally opposed.30 Then the following are equivalent:

1. For all p, q ∈ ∆(C): [f1(p) > f1(q) and f2(p) > f2(q)] =⇒ g(p) ≥ g(q).

2. There exist scalars a, b ≥ 0 and c ∈ R such that g = af1 + bf2 + c.

Proof. It is immediate that 2 implies 1. To show 1 implies 2, we first argue that the 1 implies

the same implication holds when the strict inequalities are replaced with weak inequalities:

[f1(p) ≥ f1(q) and f2(p) ≥ f2(q)] =⇒ g(p) ≥ g(q). (11)

The argument relies on the assumption that f1 and f2 are not ordinally opposed and is similar

to the use of constraint qualification in establishing the Kuhn-Tucker Theorem. Suppose

p, q ∈ ∆(C) satisfy f1(p) ≥ f1(q) and f2(p) ≥ f2(q). Since f1 and f2 are not ordinally

opposed, there exist p∗, q∗ ∈ ∆(C) such that f1(p∗) > f1(q∗) and f2(p∗) > f2(q∗). Let

pα ≡ αp∗+(1−α)p and qα ≡ αq∗+(1−α)q. Since these functions are affine, f1(pα) > f1(qα)

and f2(pα) > f2(qα) for all α ∈ (0, 1]. Condition 1 therefore implies g(pα) ≥ g(qα) for all

α ∈ (0, 1]. By continuity g(p) ≥ g(q). This establishes the condition in Equation (11).

Fix any c̄ ∈ C and define f̄1(p) ≡ f1(p) − f1(δc̄), f̄2(p) ≡ f2(p) − f2(δc̄), and ḡ(p) ≡
g(p) − g(δc̄). Note that Equation (11) holds for f1, f2, g if and only if it holds for f̄1, f̄2, ḡ.

Each of these functions can be extended to a continuous linear function on the space ca(C) of

all finite signed measures on C: Since the mapping c 7→ f̄1(δc) is continuous in the topology on

C, the function F1(p) ≡
∫
f̄1(δc)dp for p ∈ ca(C) is a well-defined continuous linear functional

that extends f̄1. Define F2 and G analogously. We next show that for any p, q ∈ ca(C):

[F1(p) ≥ F1(q) and F2(p) ≥ F2(q)] =⇒ G(p) ≥ G(q). (12)

29There are two small distinctions between this result and the classic version of Farkas’ Lemma.
First, Farkas’s Lemma deals with linear functions defined on a vector space whereas we restrict to
linear functions defined on the convex subset ∆(C) of the vector space ca(C) of all finite signed
measures on C. Second, in condition 1 we only assume the conclusion that g(p) ≥ g(q) when the
corresponding inequalities for f1 and f2 are strict. Together with our assumption that f1 and f2 are
not ordinally opposed, we show in the proof that this condition implies the same conclusion for the
case where the inequalities are weak.

30That is, there exist p, q ∈ ∆(C) such that both f1(p) > f1(q) and f2(p) > f2(q).
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To establish this condition, fix any p, q ∈ ca(C) and suppose Fi(p) ≥ Fi(q) for i = 1, 2. Let

p′ = p−p(C)δc̄ and q′ = q−q(C)δc̄. Then p′(C) = q′(C) = 0, and we also have Fi(p
′) ≥ Fi(q′)

since f̄i(δc̄) = 0. Equivalently, Fi(p
′ − q′) ≥ 0. There exist p′′, q′′ ∈ ∆(C) and α ≥ 0 such

that p′ − q′ = α(p′′ − q′′). By linearity, Fi(p
′′) ≥ Fi(q

′′), which implies fi(p
′′) ≥ fi(q

′′) for

i = 1, 2. Equation (11) therefore implies g(p′′) ≥ g(q′′), which implies G(p′′) ≥ G(q′′) and

consequently G(p′) ≥ G(q′) and G(p) ≥ G(q). This establishes Equation (12).

By the Convex Cone Alternative Theorem (an infinite-dimensional version of Farkas’

Lemma) (Aliprantis and Border (2006, Corollary 5.84)), Equation (12) implies there exist

a, b ≥ 0 such that G = aF1 + bF2. Thus ḡ = af̄1 + bf̄2, and hence g = af1 + bf2 + c, where

c = g(δc̄)− af1(δc̄)− bf2(δc̄). �

Turning now to the proof of Lemma 1, if v′ ≈ −u, then by definition v �u v
′. Alterna-

tively, if it is not the case that v′ ≈ −u, then u and v′ are not ordinally opposed. In this

case, Lemma 9 implies there exist a, b ≥ 0 and c ∈ R such that

v = au+ bv′ + c.

Since v is nontrivial, it must be that a+b > 0. Thus v ≈ αu+(1−α)v′ for α = a/(a+b) ∈ [0, 1],

and hence v �u v
′.

D.2 Proof of Lemma 2

If v′ ≈ −u, then for any menu x,

max
q∈Bv′ (x)

u(q) = min
q∈x

u(q) ≤ u(p), ∀p ∈ x.

In particular,

max
q∈Bv′ (x)

u(q) ≤ max
p∈Bv(x)

u(p).

If we do not have v′ ≈ −u, then v �u v
′ implies v ≈ αu+ (1−α)v′ for some α ∈ [0, 1]. First,

consider α = 0. In this case, v ≈ v′. Therefore Bv(x) = Bv′(x), which implies

max
p∈Bv(x)

u(p) = max
q∈Bv′ (x)

u(q).

Finally, consider the case of α > 0. Note that for any menu x and any p ∈ Bv(x) and

q ∈ Bv′(x),

αu(p) + (1− α)v′(p) ≥ αu(q) + (1− α)v′(q) and v′(q) ≥ v′(p).
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Since α > 0, these inequalities imply u(p) ≥ u(q). Therefore,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q),

as claimed.

D.3 Proof of Lemma 3

Suppose (u1, µ1) and (u2, µ2) are random Strotz representations of %1 and %2 such that

u1 ≈ u2 ≡ u and µ1 �u µ2. Since positive affine transformations of the functions ui do not

change the preferences, it is without loss of generality to assume u1 = u2 ≡ u. Now fix any

menu x, and let [a, b] = u(x). Define fx : V → [a, b] by

fx(v) = max
p∈Bv(x)

u(p).

By Lemma 2, v �u v
′ implies fx(v) ≥ fx(v′). Therefore, for any α ∈ [a, b] and v �u v

′,

v′ ∈ f−1
x ([α, b]) ⇐⇒ fx(v′) ≥ α =⇒ fx(v) ≥ α ⇐⇒ v ∈ f−1

x ([α, b]).

Thus f−1
x ([α, b]) is a u-upper set. Therefore,

µ1(f−1
x ([α, b])) ≥ µ2(f−1

x ([α, b])).

Define distributions ηxi ≡ µi ◦ f−1
x on [a, b] for i = 1, 2. By the preceding arguments, ηx1

first-order stochastically dominates ηx2 . Therefore, by the change of variables formula,

U1(x) =

∫
V
fx(v) dµ1(v) =

∫ b

a
αdηx1 (α) ≥

∫ b

a
αdηx2 (α) =

∫
V
fx(v) dµ2(v) = U2(x).

Since this is true for every x, it follows immediately that %2 is more temptation averse than

%1.

D.4 Proof of Theorem 5

Lemma 10. Suppose (u, v, F ) is an uncertain intensity Strotz representation. Define a func-

tion g : [0, 1] → V by g(α) = αu + (1 − α)v. Define a probability measure µ on V by

µ ≡ F ◦ g−1.31 Then the following statements hold.

31We are abusing notation slightly and using F to also denote the probability measure on [0, 1] that
has F as its distribution function. That is, for any measurable set A ⊂ [0, 1], we write F (A) to denote∫
A
dF (α). Thus µ(E) =

∫
{α′:g(α′)∈E} dF (α) for any measurable E ⊂ V.
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1. If (u, v, F ) is an uncertain intensity Strotz representation of a preference %, then (u, µ)

is a random Strotz representation of %.

2. If (u, v, F ) is an uncertain intensity Strotz representation of a random choice rule λ,

then (u, µ) is a random Strotz representation of λ.

3. Suppose (u, v, Fi) are uncertain intensity Strotz representations for i = 1, 2 and define

µi ≡ Fi ◦ g−1. Then µ1 �u µ2 if and only if F1 ≥FOSD F2.

Proof. To prove statement 1, note that by assumption % is represented by

U(x) =

∫ 1

0
max{u(p) : p ∈ Bg(α)(x)} dF (α).

By the standard change of variables formula, this implies

U(x) =

∫
V

max{u(p) : p ∈ Bṽ(x)} d(F ◦ g−1)(ṽ)

=

∫
V

max{u(p) : p ∈ Bṽ(x)} dµ(ṽ),

and hence (u, µ) is a random Strotz representation of %.

To prove statement 2, note that by assumption there exists, for all menus x, a measurable

selection function px : [0, 1]→ x with px(α) ∈ Bu(Bg(α)(x)) for all α ∈ [0, 1] such that

λx(y) =

∫ 1

0
1[px(α)∈y] dF (α)

for all measurable y ⊂ x. Take any measurable selection function p̃x : V → x with p̃x(ṽ) ∈
Bu(Bṽ(x)) for all ṽ ∈ V that also satisfies px(α) = p̃x(g(α)) for all α ∈ [0, 1].32 Therefore, for

any measurable y ⊂ x,

λx(y) =

∫ 1

0
1[p̃x(g(α))∈y] dF (α)

=

∫
V

1[p̃x(ṽ)∈y] d(F ◦ g−1)(ṽ)

= µ(p̃−1
x (y)),

and hence (u, µ) is a random Strotz representation of λ.

32To see that such a selection function p̃x exists, fix any measurable selection function p̂x : V → x
with p̂x(ṽ) ∈ Bu(Bṽ(x)) for all ṽ ∈ V. Let V̄ = g([0, 1]) ⊂ V. When the codomain of g is restricted
to V̄, i.e., g : [0, 1] → V̄, this function is a bijection. Now define p̃x(ṽ) = px(g−1(ṽ)) for ṽ ∈ V̄ and
p̃x(ṽ) = p̂x(ṽ) for ṽ /∈ V̄.
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To prove statement 3, suppose µi ≡ Fi ◦g−1 for i = 1, 2 and µ1 �u µ2. Fix any α ∈ [0, 1],

and let U = {v′ ∈ V : v′ �u αu + (1 − α)v}. By construction, U is a u-upper set, so

µ1(U) ≥ µ2(U). In addition, g−1(U) = [α, 1]. Therefore,

F1([α, 1]) = µ1(U) ≥ µ2(U) = F2([α, 1]).

Since this is true for all α ∈ [0, 1], F1 ≥FOSD F2.

Conversely, suppose F1 ≥FOSD F2. Fix any u-upper set U . Note that for any 0 ≤ α ≤
α′ ≤ 1, we have g(α′)�u g(α) and hence

g(α) ∈ U =⇒ g(α′) ∈ U .

This implies that the set g−1(U) is an interval from some α∗ ∈ [0, 1] to 1.33 Therefore,

µ1(U) = F1(g−1(U)) ≥ F2(g−1(U)) = µ2(U).

Since this is true for all u-upper sets, µ1 �u µ2. �

Turning now to the proof of Theorem 5, suppose % has an uncertain intensity Strotz

representation (u, v, F̂ ), and λ has an uncertain intensity Strotz representation (u, v, F ). To

establish sufficiency, suppose the individual is naive. The conclusion that F̂ ≥FOSD F follows

immediately from Theorem 3 and Lemma 10 in the case of finite C. A small additional step

is needed in the case where C does not have finite cardinality.

Specifically, there is a finite subset C∗ ⊂ C such that the restrictions of u and v to

∆(C∗) are also independent expected-utility functions, that is, neither one a positive or

negative affine transformation of the other. We abuse notation slightly and also denote these

restrictions by u, v. Note also that the restrictions of % and λ to K(∆(C∗)) must satisfy

naiveté. Let V∗ denote the set of all continuous functions ṽ : C∗ → R. Define measures

µ̂ ≡ F̂ ◦ g−1 and µ ≡ F ◦ g−1 on V∗, where g : [0, 1]→ V∗ is defined by g(α) = αu+ (1−α)v.

By Lemma 10, (u, µ̂) and (u, µ) are random Strotz representations of the restrictions of %

and λ to K(∆(C∗)). Therefore, Theorem 3 implies µ̂ �u µ. By Lemma 10, this implies

F̂ ≥FOSD F .

To establish necessity, suppose F̂ ≥FOSD F . Define measures µ̂ ≡ F̂ ◦g−1 and µ ≡ F ◦g−1

on V. Lemma 10 implies that (u, µ̂) and (u, µ) are random Strotz representations for % and

λ, and it implies that µ̂�u µ. By Lemma 7, the individual is naive.

33That is, it is equal to either (α∗, 1] or [α∗, 1], where α∗ = inf(g−1(U)).
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D.5 Proof of Theorem 6

To establish sufficiency, suppose individual 1 is more naive than individual 2. As argued in

the proof of Theorem 5, there exists a finite subset C∗ ⊂ C such that the restrictions of u and

v to ∆(C∗) are also independent expected-utility functions. Note that when the preferences

and random choice rules of the individuals are restricted to the domain K(∆(C∗)), individual

1 is still more naive than individual 2. Define V∗ and g as in the proof of Theorem 5, and

define measures µ̂i ≡ F̂i ◦ g−1 and µi ≡ Fi ◦ g−1 on V∗ for i = 1, 2. By Lemma 10, (u, µ̂i) and

(u, µi) are random Strotz representations for the restrictions of %i and λi to K(∆(C∗)) for

i = 1, 2. Therefore, Theorem 4 implies

µ̂1 �u µ̂2 �u µ2 �u µ1.

By Lemma 10, this implies

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.

To establish necessity, suppose

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.

Define measures µ̂i ≡ F̂i ◦ g−1 and µi ≡ Fi ◦ g−1 on V for i = 1, 2. Lemma 10 implies that

(u, µ̂i) and (u, µi) are random Strotz representations for % and λ, and it implies that

µ̂1 �u µ̂2 �u µ2 �u µ1.

By Lemma 7, the individuals are naive. By Lemma 8, individual 2 is more virtuous than indi-

vidual 1. By Lemma 3, individual 2 is more temptation averse than individual 1. Therefore,

individual 1 is more naive than individual 2.

D.6 Proof of Theorem 10

By Theorem 2, u1 ≈ u2 ≡ u and v̂1 �u v̂2 �u v2 �u v1. There are two cases to consider,

depending on whether v1 ≈ v2 or not.

Case 1—v1 ≈ v2: Let v ≡ v2 ≈ v1. Since individual 1 is strictly more naive than

individual 2, in this case we must have v̂1 �u v̂2, but not v̂1 ≈ v̂2. Therefore, it can be shown
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that there exist lotteries p1, p2, p3, p4 such that34

u(p1) > u(p2) > u(p3) > u(p4)

v̂1(p1) > v̂1(p2) > v̂1(p3) > v̂1(p4)

v̂2(p3) > v̂2(p1), v̂2(p2) > v̂2(p4)

v(p3) > v(p4) > v(p1), v(p2).

Let y = {p1, p2, p3, p4} and x = {p2, p4}. The rankings of the lotteries according to u and

v̂1, v̂2 imply that y ∼1 {p1} �1 {p2} ∼1 x and y ∼2 {p3} ≺2 {p2} ∼2 x. The ranking

according to v implies that Ci(y) = p3 and Ci(x) = p4 for i = 1, 2. Therefore, {C1({x, y})} =

{p3} = {C1({y})} and {C2({x, y})} = {p4} ≺2 {p3} = {C2({y})}.
Case 2—v1 is not an affine transformation of v2: Under these assumptions, it can be

shown that there exist lotteries p1, p2, p3 such that

u(p1) > u(p2) > u(p3)

v̂2(p2) > v̂2(p1) > v̂2(p3)

v2(p2) > v2(p3) > v2(p1)

v1(p3) > v1(p2) > v1(p1).

The ranking of these lotteries according to v̂1 is not important for the result, although it is

true that the above rankings and v̂1 �u v̂2 imply v̂1(p1), v̂1(p2) > v̂1(p3). Let y = {p1, p2, p3}
and x = {p1, p3}. The ranking according to v1 implies C1(y) = C1(x) = p3, so {C1({x, y})} =

{p3} = {C1({y})}. The rankings according to u and v̂2 imply that y ∼2 {p2} ≺2 {p1} ∼2 x.

The ranking according to v2 implies that C2(y) = p2 and C2(x) = p3. Thus {C2({x, y})} =

{p3} ≺2 {p2} = {C2({y})}.

34The arguments needed to prove this claim are similar to those in the proof of Theorem 8 and are
omitted.
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